
NASA Technical Memorandum 102623

t=.

THE ART OF FAULT-TOLERANT SYSTEM
RELIABILITY MODELING

Ricky W. Butler and Sally C. Johnson

March 1990

(NASA-T_-1026_3) THL ART Of: FAULT-TOLERANT

SYSTE_ R_LIA_ILTTY M(3,q_LING (NASA) 1._? p
CSCL O¢P,

G3/0_

N90-22292

Unclds

0280231

Nalional Aeronautics and
Space Adminislration

Langley Research Center

Hampton, Virginia 23665-5225

Contents

1 Introduction 1

2

3

Introduction to Markov Modeling 2

5

4 Modeling Reconfigurable Systems 10

4.1 Degradable Triad 10

4.2 Triad to Simplex 12

4.3 Degradable Quad 13

4.4 Triad with One Spare 14

4.5 Some Observations About Multi-Step Fault-Error Handling Models 14

Reliability Analysis Programs 16

5.1 Overview of SURE 16

5.2 Model-Definition Syntax 19

5.2.1 Lexical Details 19

5.2.2 Constant Definitions 19

5.2.3 Variable Definition 20

5.2.4 Expressions 21

5.2.5 Slow Transition Description 21

5.2.6 Fast Transition Description 22

5.2.7 FAST Exponential Transition Description 22
5.3 SURE Commands 24

5.3.1 READ Command 24

5.3.2 RUN Command 24

5.3.3 LIST Constant 24

5.3.4 START Constant 25

5.3.5 TIME Constant 25

5.3.6 PRUNE and WARNDIG Constants 25

5.4 Overview of the STEM and PAWS Programs 25

Modeling Non-Reconfigurable Systems 3

3.1 Simplex Computer 4

3.2 Static Redundancy 5

3.3 N-Modularly Redundant System 7

3.4 Fault Tree Analysis: A Few Comments 7

6 Reconfiguration by Degradation 26

6.1 Degradable 6-plex 26

6.2 Single-Point Failures 28

6.3 Fail-stop Dual 32

6.4 Dual-Dual 34

6.5 Degradable Quad with Partial Fail-stop or Self-test 35

Reconfiguration By Sparing 38

7.1 Triad with Two Cold Spares 38

7.2 Triad with Two Warm Spares 39

8 The

8.1

_.2

ASSIST Model Specification Language 42

Abstract Language Syntax 42

8.1.1 Constant-Definition Statement 43

8.1.2 SPACE Statement 44

8.1.3 START Statement 44

8.1.4 DEATHIF Statement 45

8.1.5 PRUNEIF Statement 45

8.1.6 TRANTO Statement 45

8.1.7 Model Generation Algorithm 47

Illustrative Example: SIFT-Like Architecture 48

Reconfigurable Triad Systems 49

9.1 Triad with Cold Spares 50

9.2 Triad with Instantaneous Detection of Warm Spare Failure 52

9.3 Degradable Triad with Non-Detectable Spare Failure 53

9.4 Degradable Triad with Partial Detection of Spare Failure 54

10 Multiple Triads

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

57

Two Triads with Pooled (',old Spares 57

Two Triads with Pooled Cold Spares Reducable to One Triad 58

Two Degradable Triads with Pooled Cold Spares 60

Two Degradable Triads with Pooled Warm Spares 62

Multiple Non-degradable Triads with Pooled Cold Spares 63

Multiple Degradable Triads with Pooled Cold Spares 64

Multiple Degradable Triads with Pooled Warm Spares 66

Multiple Competing Recoveries 67

ii

11 Transient and Intermittent Faults 72

11.1 Transient Fault Behavior 72

11.2 Modeling Transient Faults 73

11.3 Model of Quad Subject to Transient and Permanent Faults 75

11.4 Degradable NMR with Transients 77

11.5 FTP .. 81

11.6 Modeling Intermittent Faults 84

12 Modeling Control System Architectures 88

12.1 Monitored Sensors 91

12.2 Failure Dependency 92

12.3 Two Triads with Three Power Supplies 107

12.4 Byzantine Faults 109

13 Time and Sequence Dependencies 113

13.1 Failure Rate Dependencies 113

13.2 Recovery Rate Dependencies 114

14 Sequences of Reliability Models 114

14.1 Phased Missions 114

14.2 Non-Constant Failure Rates 119

14.3 Continuously Varying Failure Rates 123

15 Concluding Remarks 124

ooo

nl

1 Introduction

The rapid growth of digital electronics technology has led to the proliferation of sophisti-

cated computer systems capable of achieving very high reliability requirements. Reliability

requirements for computer systems used in military aircraft, for example, are typically in the

range of 1 - 10 -r per mission, and reliability requirements of 1 - 10 -9 for a 10-hour flight

are often expressed for flight-crucial avionics systems. To achieve such optimistic reliability

goals, computer systems have been designed to recognize and tolerate their own faults; i.e.

fault-tolerant computer systems. Although capable of tolerating certain faults, these systems

are still susceptible to failure. Thus, the reliability of these systems must be evaluated to

ensure that requirements are met.

The reliability analysis of a fault-tolerant computer system is a complex problem. A life-

testing approach is typically used to determine the reliability or "lifetime" of a diversity of

products such as light bulbs, batteries, and electronic devices. The life-testing methodology

is clearly impractical, though, for computer systems with reliability goals of the order 1 -

10 -7 or higher; hence, an alternate approach is necessary. The approach generally taken to

investigate the reliability of a highly reliable system is

1. develop a mathematical reliability model of the system

2. measure or estimate the parameters of the model

3. compute system reliability based upon the model and the specified parameters.

The estimated system reliability is consequently strongly dependent on the model itself.

Since the behavior of a fault-tolerant, highly reliable system is complex, formulating models

that accurately represent that behavior can be a difficult task. Mathematical models of

fault-tolerant systems must capture the processes that lead to system failure and the system

capabilities which enable operation in the presence of failing components. Since current

manufacturing techniques cannot produce circuitry with adequate reliability to meet ultra-

high reliability requirements, highly reliable systems use redundancy techniques, such as

parallel redundant units or dissimilar algorithms for computing the same function, to achieve

their fault tolerance. Reconfiguration, the process of removing faulty components and either

replacing them with spares or degrading to an alternate configuration, is another method

often utilized to increase reliability without the overhead of more redundancy. Fortunately,

most of the detailed instruction-level activities of a system do not directly affect system

reliability. Only the "macroscopic" fault-related events must be included in the reliability

model.

Furthermore, experimentally testing the correctness of the model would require at least

as much experimentation as is required for life testing! Consequently, the best that can be

done is to carefully develop the reliability model and subject it to scrupulous scrutiny by

a team of experts. The process of reliability modeling is thus not an exact science, and at

best, should be called an art. It is the goal of this paper to look into this "craft" of reliability

modeling.

The paper is structured in a tutorial style rather than as a catalog of reliability models.

Consequently, elementary concepts are introduced first which are followed by increasingly

more complex concepts. Thus, the paper begins with an overview of essential aspects of

Markov models. Next, the fundamental techniques used for modeling the non-reconfigurable

systems are developed. Then, the basic techniques used in modeling reconfigurable systems

are explored. Before pressing on to more complicated models, the computer program SURE

(Semi-Markov Unreliability Range Evaluator) [8], which can be used to solve the reliability

models numerically, is introduced. Next, the two basic types of reconfiguration--degradation

and sparing--are examined in more detail with the help of the SURE input language. At this

point, the paper introduces a new language for describing reliability models--the ASSIST

language. This is necessary since the models presented in the later sections are very large

and complex. If they were defined by enumerating the states and transitions of the model ex-

haustively, the reader would become exhausted. The expressiveness of the ASSIST language

allows complex models to be defined in a succint and economical manner. Next, complex

systems consisting of multiple triads using various forms of reconfiguration are investigated.

Then the techniques used to model transient and intermittent faults are presented. The next

section explores the techniques used to model the components of control system architectures

including sensors, buses, actuators, etc. Finally, some specialized topics, such as sequence

dependencies, phased missions, and non-constant failure rate models, are presented.

2 Introduction to Markov Modeling

Traditionally, the reliability analysis of a complex system consisting of many components has

been accomplished using combinatorial mathematics. The standard "fault tree" method of

reliability analysis is based on such mathematics. Unfortunately, the fault-tree approach is

incapable of analyzing systems where reconfiguration is possible. In reconfigurable systems

the critical factor often becomes the effectiveness of the dynamic reconfiguration process. It

is necessary to model such systems using the more powerful Markov modeling technique.

The system is thus represented as consisting of a vector of attributes which change over

time. A particular set of values of the attributes is called a "state" of the system. These

attributes are typically system characteristics such as the number of working processors, the

number of spare units, the number of faulty units which have not been removed, etc. The

more attributes included in the model, the more complex the model will be. Thus, one

typically tries to choose the smallest set of attributes that can accurately describe the fault-

related behavior of the system. The next step in the modeling process is to characterize the

transition time from one state to another. Since this transition time is rarely deterministic,

the transition times are described using a probability distribution.

Certain states in the system represent system failure, while others represent fault-free

behavior or correct operation in the presence of faults. The model chosen for the system

must represent system failure properly. Defining exactly what constitutes system failure is

difficult because system failure is often an extremely complex function of external events,

software state, and hardware state. The modeler is forced to make either conservative or

non-conservative assumptions about what is system failure. If one wishes to say that the

reliability of the system is higher than a specific value, then conservative assumptions are

made. For example, in a triple modular redundant (TMR) system of computers, the presence

of two faulty computers is considered to be system failure. This is conservative since the two

faults may not actually corrupt data in such a way as to defeat the voter. This assumption

simplifies the model since the probabilities of collusion between the faulty pair does not have

to be modeled. If one wishes to say the reliability is no better than some value, then non-

conservative assumptions are made. For example, the modeler assumes only certain parts of

the system can fail.

It is important that all of the transitions in the reliability model be measurable. This often

is the primary consideration when developing a model for a system. Although a particular

model may elegantly describe the behavior of the system, if it depends upon unmeasurable

parameters, then it is useless.

Typically, the transitions of a fault-tolerant system model fall into two categories: slow

failure transitions and fast recovery transitions. If the states of the model are defined prop-

erly, then the slow transitions can be obtained from field data and/or MIL-STD 217C cal-

culations. The faster transition rates correspond to system responses to fault arrivals and

can be measured experimentally using fault injection. The primary problem is to properly

model the system so as to facilitate the determination of these transitions. If the model is

too coarse the transitions become experimentally unobservable. If the model is too detailed

the number of transitions which must be measured can be exorbitant.

In this introduction some of the issues of reliability modeling have been introduced. The

goal of this paper is to explore the methods and assumptions used in the development of

reliability models for fault-tolerant computer systems.

3 Modeling Non-Reconfigurable Systems

The simplest types of systems to model are non-reconfigurable systems. This section in-

troduces the basic elements of reliability modeling by describing how to model simple non-

reconfigurable systems ranging from a single simplex computer through a majority-voting

N-modularly-redundant (NMR) system.

Figure 1: Model of a SimplexComputer

3.1 Simplex Computer

The first example is a system consisting of a single computer. First, we let T be a random

variable representing the time to failure of the computer. Next, we must define a distribution

for T, say F(t). Typically, it is assumed that electronic components, and consequently
computers, fail according to the exponential distribution:

F(t) = Prob[T < t] = 1- e -at

The parameter A completely defines this distribution. An important concept in reliabihty

modeling is the failure rate (or hazard rate), h(t) defined as follows

h(t) =

For the exponential distribution, the hazard rate h(t) = ._. The exponential is the only

distribution with a constant hazard rate. The Markov model representing this system is

given in figure 1. In this Markov model, state 1 represents the operational state in which the

simplex computer is working, state 2 represents the system failure state in which the simplex

computer has failed, and the transition from state 1 to state 2 represents the occurrence of

the failure of the simplex computer. The transitions of a Markov model are exponential and
thus can be labeled by the constant hazard rate.

For reliability modeling purposes, it is generally assumed that electronic components fail

according to the exponential distribution. Some immature devices may exhibit a somewhat

higher failure rate due to insufficient testing before product delivery; however, mature devices

have been shown experimentally to fail according to the exponential distribution [1]. The

reader is referred to the MIL-STD 217D handbook [2] for a more complete discussion on the

problem of estimating the reliability of electronic components. Once the reliabihty of each

chip in a computer is known, the computer's failure rate is simply the sum of the failure

rates of the individual chips. To see this, suppose 11, _2,..., _. represent the failure rates of

the chips in the computer. Letting T be a random variable representing the time of failure

of the computer, and Ti represent the time the ith chip fails, the distribution of failure for

the computer Fc(t) is determined as follows:

3._ C 2_

Figure 2: Model of a TMR System

v (t) = Prob[T < t]

= Prob[min{T_,T2,...,Tn} < t]

= 1 - Prob[T1 > t,T, > t, T, > t]

If we assume that the chips fail independently, we have

Fo(t) = 1 - I]_'=_ Prob[Ti > t]

= 1 -]-Ii"=l exp(-Ait)

- I- exp(- VTM Ait)-- ,--,/=1

which is an exponential distribution with failure rate --,i=_

The above technique does not work for parallel redundant systems. The time of failure

of a redundant system is not merely the time that the first chip fails. Such systems will be

examined in the following sections.

3.2 Static Redundancy

The Triple-Modular Redundant (TMR) is one of the simplest hull-tolerant computer archi-

tectures. The system consists of three computers all performing exactly the same computa-

tions on exactly the same inputs. The computers are assumed to be physically isolated such

that a failed computer cannot affect another working computer. Mathematically, therefore,

the computers are assumed to fail independently. It is further assumed that the outputs are

voted prior to being used by the external system (not included in this model), and thus a

single failure does not propogate its erroneous value to the external world. Thus, system

failure does not occur until two computers fail. The model of figure 2 describes such a

system. State 1 represents the initial condition of three working computers. The transition

from state 1 to state 2 is labeled 3)_ to represent the rate at which any one of the three

computers fail. The system is in state 2 when one processor has failed. The transition from

state 2 to state 3 has rate 2A since there are only two working computers that can fail. State

3 represents system failure because a majority of the computers in the system have failed.

In figure 3, the probability of system failure as a function of mission time is given. The

failure rate)_ is lO-4/hour. It can be seen that high reliability is strongly dependent on

5

10o

10-I

10-2

lO-S

P.f 10-4

lO-S

10-6

lO-r

lO-S I I I l

10 0 101 l0 s 103 104 l0 s

Time (hrs)

10 6 l0 T

Figure 3: Probability as a Function of Mission Time

6

Figure 4: Model of 7MR System

a short mission time. It should be noted that it was implicitly assumedthat the system
starts with no failed components(i.e. Prob in state 1 at time 0 = 1). This is equivalent to
assumingperfect maintenancebetweenmissions.

3.3 N-Modularly Redundant System

The assumptions of an N-modularly redundant system are the same as for a TMR system.

The voter used in such a system is usually a majority voter--as long as a majority of

processors have not failed the system is still operational. The following model (figure 4)

describes a 7-processor system with a 7-way voter. The probability of system failure as a

function of mission time is given in figure 5. Figure 6 shows the unreliability of an NMR

system as a function of N. Theoretically, the probability of system failure _ 0 as N ---, _.

Of course, this model ignores the practical problem of building an arbitrarily large N-way

voter. If implemented in hardware, the additional hardware would significantly increase the

processor failure rate ._. If implemented in software, the CPU overhead could be enormous,

seriously increasing the likelihood of a critical task missing a hard deadfine [3].

3.4 Fault Tree Analysis: A Few Comments

Fault trees have been used for the reliability analysis of complex system for many years.

Nevertheless, it is important to recognize the limitations of the fault-tree method. Basically,

a fault-tree can be used to model a system where there is no reconfiguration--the removal

of a faulty component from the system. Thus, all of the examples in this section could have

been modeled with a fault tree. In reconfigural_e systems, the system attempts to remove

faulty components before another failure occurs which could overcome the capabilities of the

voters. (This will be explored in more detail in the next section.) The probability that the

system will not succeed cannot be calculated with the combinatorial fault tree approach.

The more powerful Markov state-space modeling approach is needed.

Although fault trees can only be used to solve a limited class of problems, these combi-

natorial solutions can be calculated quite efficiently using a fault-tree solver such as NASA

Langley's Fault Tree Compiler (see [4]). Thus, a reliability engineer who frequently analyzes

nonreconfigurable systems that can be solved combinatorically would be wise to use an effi-

cient fault-tree solver whenever possible, because the combinatoric fault-tree computations

7

10°
.... ...

Pi 10-10

10-2o I I
10 ° 101 10 2 10 3 10 4 10 5 106 10 7

Time (hrs)

Figure 5: 7MR Unreliability As a Function of Mission Time

100

10 -10

10-20

10 -30

• "...,

I I I I I I

2 4 6 8 10 12 14

N

16

Figure 6: NMR Unreliability As a Function of N

are typically more efficient than are Markov solutions.

4 Modeling Reconfigurable Systems

Fault-tolerant systems are often designed using a strategy of reconfiguration. Reconfiguration

strategies come in many varieties but always involve the logical or physical removal of a

faulty component. The techniques used to identify the faulty component and the methods

used to repair the system vary greatly and can lead to complex reliability models. There

are two basic types of reconfiguration strategies--degradation and replacement with spares.

The degradation method involves the permanent removal of a faulty component without

replacement. The reconfigured system continues with a degraded sel of components. The

sparing method involves both the removal of faulty components and their replacement with

a spare. In this section we will briefly introduce these concepts. They will be explored in

greater detail in later sections.

4.1 Degradable Triad

The simplest architecture based upon majority voting is the triplex system. To increase the

rehability of the system, triplex systems have been designed which reconfigure by degrada-

tion. The model of figure 7 describes the behavior of a simple degradable triplex system.

The degradable triplex system begins in state 1 with all three processors operational.

The transition from state 1 to state 2 represents the failure of any of the three processors.

Note that since the processors are identical, we do not have to represent the failure of each

processor with a separate state. At state 2 the system has one failed processor. The system

analyzes the errors from the voter and diagnoses the problem. The transition from state 2 to

state 4 represents the removal (i.e. reconfiguration) of the faulty processor. Reconfiguration

transitions are labelled with a distribution function (e.g., F(t)) rather than a rate. The

reason for this is that experimental measurement of the reconfiguration process has revealed

that the distribution of recovery time is not exponential [1]. Consequently, the transition

cannot be described by a constant failure rate. The meaning is simple--the probability

that the transition time from state 2 to state 4 is less than t is F(t). The presence of a

non-exponential transition generalizes the mathematical model to the class of semi-Markov

models. Such models are far more difficult to solve than pure Markov models. In a subsequent

section, several computer programs will be discussed which can be used to solve Markov and

semi-Markov models.

At state 4 the system is operational with two good processors. This transition occurs as

long as a second processor does not fail before the diagnosis is complete. Otherwise, the voter

could not distinguish the good results from the bad. Thus, there is also a second transition

10

r(t)

2_

F(t)

Figure 7: Model of Degradable Triplex

11

F(t)

Figure 8: Model of Triplex to Simplex System

from state 2 to state 3 which represents the coincident failure of a second processor. The

rate of this transition is 2_, since either of the remaining two processors could fail. State

3 is a death state (i.e. an absorbing state) which represents failure of the system due to
near-coincident failure.

At state 4 the system is operational with two good processors and no faulty processors

in the active configuration. Either one of these processors may fail taking the system to

state 5. At state 5, once again, a race occurs between the reconfiguration process ending

in state 7 and the failure of a second processor ending in state 6. State 6 is thus another

death state and state 7 is the operational state where there is one remaining good processor.

The transition from state 7 to 8 represents the failure of the last processor. At state 8 there

are no good processors remaining, and the probability of reaching this death state is often

referred to as failure by exhaustion of parts.

4.2 Triad to Simplex

The model presented in the previous section was unrealistic in one major respect--the recon-

figuration process from the dual to the simplex was assumed to be perfect. In other words,

when either of the two processors failed, the system diagnosed which of the two processors

was the faulty one with 100% accuracy. When using a majority voter on three or more

processors, such an assumption is not unrealistic. However, with only two good processors,

there is no way for this diagnosis to be perfect. In a later section we will explore the use of

self-test programs to diagnose failure in a dual system. In this section, we will explore an-

other option--avoid the dual mode, i.e. degrade directly from a triplex to a simplex system.

The model of figure 8 describes this system.

As before the horizontal transitions represent fault arrivals. The vertical transition repre-

12

(

F (t)

2_ ._

F Ct)

Figure 9: Model of a Degradable Quad

sents system recovery. The recovery transition is labelled with a distribution function rather

than a rate to indicate that the transition is not exponential. The transition rate from state

1 to state 2 is 3_ because there are three active processors that can fail. When one of those

processors fails, the system is in state two. Before reconfiguration occurs, there are still two

active processors that can fail; thus, the transition from state 2 to death state 3 with rate

2_ competes with the recovery transition. Reconfiguration consists of discarding both the

faulty processor plus one of the working processors. Thus, the transition rate from state 4

to state 5 is _ because only one processor remains in the active configuration.

4.3 Degradable Quad

The model in figure 9 describes a degrad,_ble quad. This system starts with four working

processors. When one of those four processors fails (state 2), the reconfiguration process

consists of removing the faulty processor, leaving a triad of processors (state 4). When one

of the three remaining processors fails (state 5), the reconfiguration process entails removal

of the faulty processor plus one of the working processors, leaving a simplex (state 7). Note

that a different function is used for the transition from state 5 to state 7 than from state 2

13

3)` ,(

(

2)` ,@

F(t)

3)` ,@ 2)` ,_@

Figure 10: Model of Triplex with One Spare

to state 4. This is necessary if the reconfiguration process, and hence its rate, varies as a
function of the state.

4.4 Triad with One Spare

In the previous models the reconfiguration process removed a faulty processor and the system

continued operation with degraded levels of redundancy. This section provides a brief intro-

duction to the technique of sparing, i.e. replacing a faulty processor with a spare processor.

This technique will be explored in detail in section 7.

Suppose we have a triplex system which has one spare that does not fail when it is

inactive. The model of figure 10 describes this system.

As before, state 2 represents the situation where there are two good processors and one

faulty processor. The transition from state 2 to state 4 represents the detection and isolation

of the faulty processor and its replacement with a spare processor. While the system is in

state 2, there are 2 active working processors that can fail; thus, the rate of the transition to

death state 3 is 2),. After reconfiguration occurs, there are once again three active processors

that can fail; thus the transition rate from state 4 to state 5 is 3)`. This model assumes the

system does not immediately degrade to simplex upon the next failure; but rather operates

in duplex until the next failure brings system failure.

4.5 Some Observations About Multi-Step Fault-Error Handling
Models

Fault-injection experiments have been performed at NASA Langley demonstrating the fea-

sibility of measuring the distribution of the overall recovery process [5!. Recovery processes

14

havebeenshownto be nonexponential[5, 6], and a given system may even exhibit, different

distributions for recoveries from different types of faults. Fault injection experiments may be

used to estimate the mean and standard deviation conditional upon recovery, and this con-

ditional mean and standard deviation are used in the SURE program to define the behavior

of a recovery transition. For more information, see [7, 8] and section 5.

Before White's solution technique was developed, the solution of semi-Markov models

with nonexponential recovery transitions was extremely difficult. Some modelers have been

willing to make the assumption that the recovery process behaves according to an exponential

distribution in order to facilitate the solution of the model. However, it should be recognized

that such an assumption introduces a modeling error of unknown quantity.

Another approach utilized to avoid the necessity of solving semi-Markov models was to de-

compose the reliability model into a fault-occurrence model and a set of fault-error handfing

models 19, 10]. Coverage parameters derived from the solution of the fault-error handling

models are inserted into the fault-occurrence model in order to compute the system reliability.

Some of these fault-error handling models, such as the CARE III single-fault model, repre-

sent the individual steps that a system performs to accomplish the overall reconfiguration

process. This multi-step process was designed to enable a more accurate representation of the

reconfiguration process than could a single exponential process. However. these multi-step

models use some parameters that are not directly observable or measurable. For example,

while the overall time of reconfiguration is directly observable, the individual times required

to detect, isolate, and recover from a fault can be extremely difficult to measure accurately.

However. now that an efficient semi-Markov solution technique is available that requires only

directly observable parameters, such an approach is unnecessary.

15

5 Reliability Analysis Programs

Before we proceed further in the art of modeling, the input language for the SURE reliability

analysis program will be presented. The same input language is used for the STEM and

PAWS reliability analysis programs. These programs are described in section 5.4.

In the remainder of this paper, the models will be presented in the SURE input language

as well as graphically. This is desirable for two reasons: (1) As the models increase in

complexity, it soon becomes impractical to present them graphically and (2) these programs

can be used to solve the models as functions of any model parameter. This will provide

insight into the nature of the systems being modeled.

5.1 Overview of SURE

Probably the easiest way to learn the SURE input language is by way of example. The input

to the SURE program for the degradable quad model in figure 9 is:

LAMBDA = IE-4;
MUI = 2.7E-4;
SIGMA1 = 1.3E-3;
MU2 = 2.7E-_;
SIGMA2 = 1.3E-3;

1,2 = 4*LAMBDA;
2,3 = 3*LAMBDA;
2,4 = <MU1,SIGMAI>;
4,5 = 3*LAMBDA;
5,6 = 2*LAMBDA;
5,7 = <MU2,SIGMA2>;
7,8 = LAMBDA;

The first five statements equate values to identifiers. The first identifier LAMBDA represents

the processor failure rate. The next two identifiers MU1 and SIGMA1 are the mean and

standard deviation of the recovery time from state 2 to state 4. The identifiers MU2 and

SIGMA2 are the mean and standard deviation of the recovery time from state 5 to state 7.

The final seven statements define the transitions of the model. If the transition is a slow

fault arrival process then only the exponential rate must be provided. For example, the last

statement defines a transition from state 7 to state 8 with rate A (or 1 × 10-4/hour). If the

transition is a fast recovery process then the mean and standard deviation of the recovery time

must be given. For example, the statement 2,4 = </401 ,SIGMA1> above defines a transition

from state 2 to state 4 with mean recovery time MU1 and standard deviation SIGMA1. The

following is an illustrative interactive session using SURE to process the above model. The

model description has been stored in a file named TRIADP1. The user input follows the ?

prompt.

16

$ s_re

SURE V7.4 NASA Langley Research Center

i? read triadpl

2: LAMBDA = 1E-6 TO* 1E-2 BY 10;
3: MU = 2.7E-4;

4: SIGMA = 1.3E-3;
5: 1,2 = 3*LAMBDA;
6: 2,3 = 2*LAMBDA;
7:2,4 = <MU,SIGMA>;
8:4,5 = 3*LAMBDA;
9:5,6 = 2*LAMBDA;

10:5,7 = <MU,SIGMA>;
11:7,8 = LAMBDA;
12: TIME = i0;

0.05 SECS. TO READ MODEL FILE
13? run

MODEL FILE = _riadpl.mod SURE V7.4 24 Jan 90 10:16:21

LAMBDA

l.O0000e-06
1.00000e-05
1.00000e-04
1.00000e-03
1.00000e-02

LOWER.BOUND

1.68485e-14

3.00387e-12
1.61714e-09
1.45575e-06
1.23551e-03

UPPERBOUND

1.77002e-14
3.12024e-12
1.66224e-09
1.51644e-06
1.26292e-03

COMMENTS RUN #I

<ExpMat>

3 PATH(S) TO DEATH STATES

Q(T) ACCURACY >= 14 DIGITS
0.633 SECS. CPU TIME UTILIZED

147

157 plo_ xylog
167 exi%

The first statement uses the READ command to input the model description file. It should be

noted that _ is defined _s a variable over a range of values in this file. This directs the SURE

program to automatically perform a sensitivity analysis as a function of this parameter over

the specified range. Statement 12 defines the mission time to be 10 hours. Statement 15

directs the program to plot the output on the graphics device. Figure 11 shows the graph

generated by this command. The XYLOG argument causes SURE to plot the X and Y axes

using logarithmic scales.

In the next subsections, more detail is presented. These subsections can probably be

skipped on first reading and used as a reference when something is encountered that is not

clear. The following conventions will be used to facilitate the description of the SURE input

language:

1. All reserved words will be capitalized in typewriter-style print.

17

le+ 00

le- 10

le - 20
le - 07

I

le - 06

I I I

le - 05 le - 04 le - 03 le - 02

Lambda

Figure 11: SURE program's plot, of output

18

2. Lowercasewordswhich are in italics indicate items which are to be replacedby some-
thing definedelsewhere.

3. Items enclosedin squarebrackets r] canbe omitted.

4. Items enclosedin braces{ } canbe omitted or repeatedasmany times asdesired.

5.2 Model-Definition Syntax

Models are defined in SURE by enumerating all of the transitions of the model. The SURE

program distinguishes between fast and slow transitions. If the mean transition time, say p

is small with respect to the mission time, i.e. p < T, then the transition is fast. Otherwise, it

is slow. Slow transitions are assumed to be exponentially distributed by the SURE program.

Fast transitions can have an arbitrary distribution. The SURE user must supply the mean

and standard deviation of the transition time. If there are multiple competing transitions

from a state, the user must supply the respective transition probabilities along with the

conditional means and standard deviations.

5.2.1 Lexical Details

The state numbers must be positive integers between 0 and the MAXSTATE implementation

limit, usually 25,000. This limit can be increased simply by changing the MAXSTATE

constant in the program and recompihng. The transition rates, conditional means and

standard deviations, etc., are floating point numbers. The Pascal REAL syntax is used for

these numbers. The semicolon is used for statement termination. Therefore, more than one

statement may be entered on a line. Comments may be included any place that blanks are

allowed. The notation "(*" indicates the beginning of a comment and "*)" indicates the

termination of a comment. The SURE program prompts the user for input by a line number

followed by a question mark.

5.2.2 Constant Definitions

The user may equate numbers to identifiers. Thereafter, these constant identifiers may be

used instead of the numbers. For example,

LAMBDA = 0.001;
RECOVER = 1E-4;

Constants may also be defined in terms of previously defined constants:

GAMMA = IO*LAMBDA;

In general, the syntax is

19

name = expression;

where name is a string of up to eight letters, digits, and underscores (_) beginning with a

letter, and czpresswn is an arbitrary mathematical expression as described in a subsequent

section entitled "Expressions".

5.2.3 Variable Definition

In order to facilitate parametric analyses, a single variable may be defined. A range is given

for this variable. The SURE system will compute the system reliability as a function of this

variable. If the system is run in graphics mode (to be described later), then a plot of this

function will be made. The following statement defines LAMBDA as a variable with range

0.001 to 0.009:

LAMBD_ = 0.001 TO 0.009;

Only one such variable may be defined. A special constant, POINTS, defines the number

of points over this range to be computed. The method used to vary the variable over this

range can be either "geometric" or "arithmetic" and is best explained by example. Suppose

POINTS = 4, then the geometric range

XV = 1 TO* 1000;

would use XV values of 1, 10, 100, and 1000, while the arithmetic range

XV = I TO+ I000;

would use XV values of 1, 333, 667, and 1000. An asterisk following the TO implies a

geometric range, while TO+ or simply TO implies an arithmetic range.

One additional option is available--the BY option. By following the above syntax with

BY "increment", the value of POINTS is automatically set such that the value is varied by

adding or multiplying the specified amount. For example,

LAMBDA = IE-5 TO* IE-2 BY i0;

sets POINTS equal to 4 and the values of LAMBDA used would be 1E-5, 1E-4, 1E-3, and

1E-2. The statement

C1(= 3 TO+ 5 BY 1;

sets POINTS equal to 3, and the values of CX used would be 3, 4, and 5.

In general, the syntax is

vat = expression T0[c] expression [BY increment];

where vat is a string of up to eight letters and digits beginning with a letter, expression is

an arbitrary mathematical expression as described in the next section and the optional c is

a + or *. The BY clause is optional; if it is used, then increment is any arbitrary expression.

2O

5.2.4 Expressions

When specifyingtransition or holding time parametersin a statement, arbitrary functions
of the constants and the variable may be used. The following operators may be used:

+ addition

- subtraction

* multiplication

/ division

** exponentiation

The following standard Pascal functions may be used: EXP(X): LN(X), SIN(X), COS(X),

ARCSIN(X), ARCCOS(X), ARCTAN(X), SQRT(X). Both () and I] may be used for group-

ing in the expressions. The following are permissible expressions:

2E-4
1.2*EXP(-3*ALPHA);
7*ALPHA + 12*L;
ALPHA*(I+L) + ALPHA**2;
2*L + (1/ILPBI)*[L + (1/ILPHI)];

5.2.5 Slow Transition Description

A slow transition is completely specified by citing the source state, the destination state,

and the transition rate. The syntax is as follows:

source, dest = rate;

where source is the source state, dest is the destination state, and rate is any valid expression

defining the exponential rate of the transition. The following are valid SURE statements:

PERM = 1E-4;
TRANSIENT = IO*PERM;

1,2 = 5*PERM;
1,9 = 5*(TRANSIENT + PEKM);
2,3 = 1E-6;

21

5.2.6 Fast Transition Description

To enter a fast transition, the following syntax is used:

source, dest = < mu, sig [, frac] >;

where

mu

sig

.frac

= an expression defining the conditional mean transition time

= an expression defining the conditional standard deviation of transition time

= an expression defining the transition probability

and source and dest define the source and destination states, respectively. The third param-

eter frac is optional. If omitted, the transition probability is assumed to be 1.0, i.e. only one

fast transition. All of the following are valid:

2,5 = <IE-5, IE-6, 0.9>;

THETA = 1E-4;

5,7 = <T_ETA, THETA*THETA, 0.5>;
7,9 = <0.0001,THETA/25>;

5.2.7 FAST Exponential Transition Description

Often when performing design studies, experimental data is unavailable for the fast processes

of a system. In this case, one must assume some properties of the underlying processes. For

simplicity, these fast transitions are often assumed to be exponentially distributed. However,

it is still necessary to supply the conditional mean and standard deviation to the SURE

program since they are fast transitions. If there is only one fast transition from a state, then

these parameters are easy to determine. Suppose we have a fast exponential recovery from
state 1 to state 2 with unconditional rate a:

(_ F(t) = 1- e at
It

The SURE input is simply

1,2 = < l/a, l/a, 1 >;

In this case, the conditional mean and standard deviation are equivalent to the unconditional

mean and standard deviation. The above transition can be specified using the following
syntax:

22

Figure 12: Model of three competing fast transitions

1,2 = FAST a;

When multiple recoveries are present from a single state, then care must be exercised

to properly specify the conditional means and standard deviations required by the SURE

program. Suppose we have the model in figure 12 where the unconditional distributions are:

&(t) = 1 - e -°'
F=(t) = 1 - e -b'

F3(t) = 1 - e -¢'

The SURE input describing the above model section is:

0,I = < I/(a+b+c), I/(a+b+c), a/(a+b+c) >;
0,2 = < I/(a+b+c), I/(a+b+c), b/(a+b+c) >;
0,3 = < 1/(a+b+c), 1/(a+b+c), g/(a+b+c) >;

Note that the conditional means and standard deviations are not equal to the unconditional

means and standard deviations (e.g., the conditional mean transition time from state 0 to

state 1 is not equal to 1/a.) The following can be used to define the above model:

0,I = FAST a;
0,2 = FAST b;
0,3 = FAST c;

The SURE program automatically calculates the conditional parameters from the uncondi-

tional rates a, b and c. The user may mix FAST exponential transitions with other general

transitions. However, care must be exercised in specifying the conditional parameters of the

non-exponential fast recoveries in order to avoid inconsistencies. For more details see [8].

23

5.3 SURE Commands

In this section a brief summary of some of the SURE commands is given. For more details

about the SURE program, see [8].

5.3.1 READ Command

A sequence of SURE statements may be read from a disk file. The following interactive

command reads SURE statements from a disk file named sifl.mod:

KEAD sif_.mod;

If no file name extent is given, the default extent .rood is assumed. A user can build a model

description file using a text editor and use this command to read it into the sure program.

5.3.2 RUN Command

After a semi-Markov model has been fully described to the SURE program, the RUN command

is used to initiate the computation:

RUN outname;

The output is written to file outname. IF outname is omitted the output is written to the

user terminal.

5.3.3 LIST Constant

The amount of information output by the program is controlled by this command. Four list

modes are available as follows:

• LIST = 0; No output is sent to the terminal, but the results can still be displayed using

the PLOT command.

• LIST = 1; Only the upper and lower bounds on the probability of total system failure

are listed. This is the default.

• LIST = 2; The probability bounds for each death state in the model are reported along

with the totals.

• LIST = 3; Every path in the model is listed and its probability of traversal. The

probability bounds for each death state in the model is reported along with the totals.

24

5.3.4 START Constant

The SThRT constant is used to specify the start state of the model. If the START constant is

not used, the program will use the source state (i.e. the state with no transitions into it) of

the model (if one exists.)

5.3.5 TIME Constant

The TIME constant specifies the mission time. For example, if the user sets TIME = 1.3, the

program computes the probability of entering the death states of the model within time 1.3.

The default value of TIME is 10. All parameter values must be in the the same units as the

TIME constant.

5.3.6 PRUNE and WARNDIG Constants

The time required to analyze a large model can often be greatly reduced by model pruning.

The SURE program automatically selects a pruning level upon detection of the first death

state. This feature can be disabled by setting the AUTOPRLr/_Econstant to zero: AUTOPRUNE

= 0. The default value of ALrr0PRUNE is 1. Alternatively, the SURE user can specify the

level of pruning using the PRUNE constant. A path is traversed by the SURE program until

the probability of reaching the current point on the path falls below the pruning level. For

example, if PRUNE = 1E-14 and the upper bound falls below 1E-14 at any point on the path,

the analysis of the path is terminated and its probability is added to the upper bound. The

sum of all the pruned states' occupancy probabilities is reported in following format.

<prune x. xxx>

The SURE program will warn the user if the pruning process was too severe,i.e, if the

pruning produced a result with less than WARNDIG digits of accuracy. In this case, the

upper bound is still an upper bound, but is not close to the lower bound. The default v_lue

of WARNDIG is 2.

5.4 Overview of the STEM and PAWS Programs

The STEM (Scaled Taylor Exponential Matrix) and PAWS (Pad6 Approximation With

Scaling) programs were developed at the NASA Langley Research Center for solving pure

Markov models (i.e. all transitions are exponentially distributed). The input language for

these two programs is the same as for the SURE program. The only major difference is that

the fast-recovery transition statement is interpreted differently. The following statement:

source, dest = < mu, sig [, frac] >;

where

25

SO_TCC

dest

rl_u

s_g

frac

= is the source state

= is the destination state

= an expression defning the conditional mean transition time

= an expression defining the conditional standard deviation of transition time

= an expression defining the transition probability

is interpreted as

source , dest = frac/mu ;

If the third parameter frac is omitted, a value of 1 is used.

For more information on the solution techniqfles used by these two rehability analysis

programs, see [11].

6 Reconfiguration by Degradation

In this section the technique of reconfiguration by degradation will be explored. The first

example is a simple degradable n-plex. Later sections introduce more complicated aspects,

such as fail-stop dual processors and self-testing processors.

6.1 Degradable 6-plex

Reconfiguration can be utilized in conjunction with levels of redundancy greater than three.

The Software Implemented Fault Tolerance (SIFT) computer system is an example of such

an architecture [127. The SIFT computer initially contains 6 processors. At this level of

redundancy, 2 simultaneously faulty computers can be tolerated. As processors fail, the

system degrades into lower levels of redundancy. Thus, SIFT is a degradable 6-plex. It

is convenient to identify the states of the system by an ordered pair (NC,NF), where NC

= the number of processors currently in the configuration and NF = the number of faulty

processors in the configuration. The semi-Markov model for the SIFT system is shown in

figure 13. There are three main concepts that dictate the structure of this model:

1. Every processor in the current, configuration fails at rate)_.

2. The system removes faulty processors with mean recovery time m.

3. A majority of processors in the configuration must. not have failed in order for the

system to be "safe".

There are a few subtle points which must also be considered. First, this model implicitly

assumes that the reconfiguration process is independent of the configuration of the system.

For example, the mean recovery time from state (6,1) is the same as from states (5,1),

26

(6,0)

<re, s>

(5',0) 5_ (_

(4

,2_ (6,3)

< m_2, s..2 >

' 4_ 3_ ,
,1)-----_ (5,2)----::._ (5,a)

[

< m,,_ > / < m_.s_2 >

:0/4-A <4,2/

< rn,,s >

tax) a__. (aa) 2_ (3,z)

< m,,, >

(ito)_--L-.-(i,11

Figure 13: Semi-Markov Model of SIFT Computer System

(4,1) and (3,1). It is possible that a system in a degraded configuration may recover slower

{because less processing power is available) or faster (because there are fewer processors to

examine in order to find the faulty one). To determine this would require extensive fault

injection in numerous configurations--a very expensive process. If this were done, however,

one could easily modify the above model to contain this information. Second, the mean

and standard deviation of the recovery time from states with two active faults is probably

different from the states with only 1 active fault. Note that in the model these transitions

are labeled with <m_2, s_2>. These parameters would have to be measured with double fault

injections. In the absence of experimental data, it is convenient to let m.2 = m/2 and s_2

= s/2. If the the detection/isolation and reconfiguration of the two faults behaves like two

independent exponential processes, this assumption is reasonable. The following SURE run

reveals the sensitivity of lhe failure probability to the mean reconfiguration time.

7, S ure

SURE V7.5 NASA Langley Research C_n_or

I? read sif_

2: LAMBDA = 5.0E-4;

3: m = 1E-4 TO* IE-I BY 10;

4: s = 6E-4;
5:m_2 = m/2;

6:s_2 = s/2;

27

7:1,2 = 6*LAMBDA;
8:2,3 = 5*LAMBDA;
9:3,4 = 4*LAMBDA;

10:2,5 = <m,s>;
11:5,6 = 5*LAMBDA;
12:3,6 = <m_2,s_2>;
13:6,7 = 4*LAMBDA;
14:7,8 = 3*LAMBDA;
15:6,9 = <m,s>;
16:9,10 = 4*LAMBDA;
17:7,10 =<m_2,s_2>;
18:10,11 = 3*LAMBDA;
19:10,12 = <m,s>;
20:12,13 = 3*LAMBDA;

21:13,14 = 2*LAMBDA;
22:13,15 = <m,s>;
23:15,16 = I*LAMBDA;

0.15 SECS. TO READ MODEL FILE
24? run

MODEL FILE = sift.mod

M

1.00000e-04
1.00000e-03
1.00000e-02
1.00000e-01

LOWERBOUND

9.17736e-12
1.21626e-II
4.34597e-II

6.77898e-10

15 PATH(S) TO DEATH STATES
1.233 SECS. CPU TIME UTILIZED
267 exi_

UPPERBOUND

9.75265e-12
1.32216e-ll
5.48450e-ll

1.16481e-09

SURE V7.5 26 Feb 90 14:23:14

COMMENTS RUN #1
.................................

(The SURE program requires that the states be defined by a single number. Therefore, the

state vectors must be mapped onto a set of integers.) Finally, it should be noted that the

SIFT computer degrades from a triplex to asimplex. Thus, the reconfiguration transition

out of state (.3,1) carries the system into state (1,0).

6.2 Single-Point Failures

All of the previous models assumed that there were no single-point failures in the system, i.e.

one fault arrival causes system failure. If a system is not designed properly and is vulnerable

to single-point failures, the reliability can be seriously degraded. To see the effects of a

single-point failure, consider the following model in figure 14 of a TMR with a single-point

failure. The parameter C represents the fraction of faults that do not cause system failure

alone. The sensitivity of the system reliability to C can be seen in the following SURE run.

$ sure

28

© Q ©

Figure 14: Model of a TMR System with a single point failure

SURE V7.4 NASA Langley Research Center

17 read spf

2: LAMBDA = 1E-4;
3: C = .9 TO 1 BY 0.01;

4: 1,2 = 3*LAMBDA*C;

5:2,3 = 2*LAMBDA;

6:1,4 = 3*(I-C)*LAMBDA;

0.05 SECS. TO READ MODEL FILE

7? run

MODEL FILE = spf.mod

C

9.00000e-01
9.10000e-01
9.20000e-01
9.30000e-01
9.40000e-01
9.50000e-01

9.60000e-01
9.70000e-01
9.80000e-01

9.90000e-01
1.00000e+O0

LOWERBOUND

3.02245e-04

2.72320e-04

2.42395e-04

2.12470e-04

I 82545e-04

1 52620e-04

i 22695e-04

9 27702e-05

6 28451e-05

3 29200e-05

2 99500e-06

UPPERBOUND

3.02700e-04

2.72730e-04

2.42760e-04
2.12790e-04

1.82820e-04

1.82850e-04

1.22880e-04

9.29100e-05

6.29400e-05

3.29700e-05

3.00000e-06

2 PATH(S) TO DEATH STATES

0.667 SECS. CPU TIME UTILIZED

8? exit

SURE V7.4 24 Jan 90 10:20:43

COMMENTS RUN #1
----.

The results of this run are plotted in figure 15.

From this run it can be seen that C must be greater than .97 in order for the TMR system

29

10-03

10-04

Ps

10 -05

.... • ..,.,,....

"',.....

",,,,,

"°

10-o6 I I I I I

.88 .90 .92 .94 .96 .98

C

Figure 15: Failure Probability as a Function of C

3O

10-3

10-4

lO-S

10-6 -

Ps 10-7 -

lO-S -

10-9 -

10-Io -

lO-n
10-1o 10-9

•.."

....._................I....... t

lO-S 10 -7

•.'"

.,/

.v

.,.,•'"

i 1 1 I I 1

i0 -s I0 -s I0-4 10 -3 10-2 10 -I 100

I-C

Figure 16: Failure Prob. of 5MR with)_ = 10 -5 As a Function Of C

to be more reliable than a simplex computer. Even more distressing is the realization that in

order to have a probability of failure less than 10 -9 in a 5MR system composed of processors

whose failure rate is very low, i.e. lO-S/hour, C must be greater than .999998. A 5MR

system that is not subject to single point failure has a probability of failure of 1 x 10 -11. See

figure 16 which was produced by solving the following model:

LAMBDA = IE-5;
N= 5;
X = IE-IO TO* I BY 2;
C= l-X;
1,2 = S*C*LAMBDA;
1,7 = 5*(I-C)*LAMBDA;
2,3 = _*C*LAMBDA;
2,8 = _*(I-C)*LAMBDA;
3,4 = 3*LAMBDA;

Experimental measurement of a parameter to such accuracy is easily shown to be imprac-

tical. Alternatively, one can design a system with no single-point failures, and thus remove

this transition from the model. If this is done, it is essential that systems be designed in a

manner that enables a proof of correctness of this property.

31

2 * PFS * A Q

2- (1 - PFS) * A

PFS = 0 TO 1 BY 0.01;

1,2 = 2*PFS*LAMBDA;

2,3 = LAMBDA;

1,4 = 2*(1-PFS)*LAMBDA;

Figure 17: Model of Fail-Stop Dual

6.3 Fail-stop Dual

When processors fail, they often.either abort the current computation or produce an incorrect

answer so far from the correct answer that it would fail a simple reasonableness check. In

both cases, it is simple for a processor to detect its own failure and to halt its processing.

A processor with this capability is often referred to as a "fail-stop" processor. It is simple

to build electronic circuitry which can recognize that one fail-stop processor has halted

(e.g., since no data arrives) and automatically switch to an alternate fail-stop processor. A

system consisting of two fail-stop processors and this kind of "selection" circuitry is called

a "dual" system. Reliability engineers often make the mistake of assuming that this process

will work correctly 100% of the time. However, most of these so-called fail-stop processors

cannot be guaranteed to always halt upon failure. For example, the failure can cause an

erroneous answer that is not detectably unreasonable, or the failure can affect the ability of

the processor to detect the failure or to halt its processing or its output.

]n this example, we will investigate the impact on system reliability when a processor

is not 100% fail-stop. Suppose PFS = the probability that a processor stops when it fails.

Furthermore, we will assume the probability of failure of the comparator is 0. The model

in figure 17 describes such a system. The plot of the SURE solution of this model is given

in figure 18. The statement PF$ = 0 TO 1 BY 0.01 directs the SURE program to compute

the probability of system failure as a function of PFS. The program solves the model for

values of PFS over the range from 0 to 1 in increments of 0.01. As can be seen in figure

18, the reliability of the system is very sensitive to the probability of the fail-stop processor

halting upon failure, and PFS must be much greater than .9 in order to have a significant

improvement in reliability over a simplex computer.

32

i0-2

10 -3

10-4

Pj

10-s

lO-S

10-_

......................,.,..

""'-..

'-,,

1 1 I l

2 x 10 -°1 4 x 10 -m 6 x 10 -m 8 x 10 -m

PFS

10 °

Figure 18: Plot of Fail-Stop Dual Unreliability vs. PFS

33

,PFS,_Q A

- PFS) * A

1,2 = 4*PFS*LAMBDA;

2,3 = 2*LAMBDA;

1,4 = 4*(1-PFS)*LAMBDA;

1,5 = NU;

5,6 = 4*LAMBDA;

(_ 2A ,Q

Figure 19: Model of Dual-Dual

6.4 Dual-Dual

The previous section illustrated the sensitivity of reliability to the assumption of fail-stop.

Consequently approaches have been sought to make the fail stop assumption virtually 100

percent. One such approach is the dual-dual architecture. In this system 4 computers are

configured into two self-checking pairs. The self-checking pairs run in lock step mode. Upon

any "miss-compare" on the outputs, the self-checking pair shuts itself down. Of course,

special circuitry must be used to perform the self-checking function, but techniques exist

which can make such circuitry "fail-safe', i.e. if the self-checker fails then the pair is shut

down. The outputs of the two self-checking pairs are sent to a selection switch as used in

the previous model. The self-checking pair serves as the fail-stop processor of the previous

model. In such a system it is not unreasonable to assume that the probability PF$ that

the self-checking pair does not stop, even though it has failed, is the probabihty that both

processors fail concurrently before the selection switch disconnects the pair. Clearly, such a

probabihty is small but not 0. This probability is intimately connected with fault latency

and failure correlation which will be further investigated in later models. In the following

model, PFS is assumed to be 0 as is commonly done. The reader, however, is cautioned to

remember the previous section. The failure rate of the switch selector ,J is included. The

parameter A represents the probability of failure of one of the processors in the self-checking

pairs. Also, the selection of the good processor pair after the shut-down of the failed pair

is assumed to be instantaneous. The transitions from state 1 to state 2 and from state 1

to state 4 in figure 19 collectively represent the failure of a processor before the selection

switch has failed. If the selection switch fails first, then the transition from state 1 to state 5

occurs. The transition from state 1 to state 2 covers the case where the failed pair shuts down

34

properly. The transition state 1 to state 4 covers the situation where the failed processor

pair does not fail stop. All bets are off about the behavior of the system in this case: so

state 4 is a death state. After the selection switch has failed (i.e. system in state 5), the

system is assumed to be permanently switched to one self-checking pair, and the failure of

either processor in that pair is assumed to cause system failure.

6.5 Degradable Quad with Partial Fail-stop or Self-test

The question is often asked whether it is preferable to degrade a triad into a simplex or into

a dual. If one degrades to a dual, one must address the problem of dealing with a failure in

the dual. How can the voter know which processor's answer is correct? If the best that can

be done is guess with probability of 0.5 of success, the probability of system failure is exactly

the same as degrading to a simplex at the first failure. However, if the probability of success

in detecting the failed processor in the dual can be improved, then naturally the system

reliability can be improved. One method of obtaining improvement is to take advantage of

the fact that many failures cause a processor to halt, as was done in the previous model.

Studies by Bendix [13 i have shown that typically 90% of CPU faults result in a processor

halting. Although this is far from fail-stop, this aspect of system failure can be utilized in

the system design to increase the reliability of a quad system. The majority voting system

must be designed so as to recognize the non-arrival of data. The details of such a voter will

not be discussed here, but such a design is easily accomplished. In the model shown in figure

20, PFS = the probability that a fault causes the processor to halt. The SURE input file is:

LAMBDA = le-4;
MEANREC = le-2;

STDKEC = le-3;
MEANREC2 = 1.2e-2;
STDKEC2 = 1.4e-3;

PFS = 0 to 1 by .1;

1,2 = 4*LAMBDA;
2,3 = 3*LAMBDA;
2,4 = <MEANREC,STDREC>;
4,5 = 3*LAMBDA;
5,6 = 2*LAMBDA;
5,7 = <MEANREC2,STDREC2>;
7,8 = 2*PFS*LAMBDA;
8,9 = LAMBDA;
7,i0 = 2*(I-PFS)*LAMBDA;

(* Failure rate of processor *)
(* Mean reconfiguration time *)
(* Szandard deviation of *)

(* Mean reconfiguration time *)
(* Standard deviation of " " *)

(* Prob. fault halts processor *)

Since the fail-stop capability is not used until the configuration has been reduced to two

processors, it is most. effective for long mission times. The result of a SURE run with mission

time = 1000 hours, is shown in figure 21.

35

Q 4._ *_ 3X .©

(

F_(t)

F2(t)

t

FS) *)_

Figure 20: Degradable Quad with Partial Fail-stop

36

10 -7

Pj

I I I I

2 x 10-°I 4 × 10-°I 6 × I0-°I 8 × 10-°I 1

PFS

Figure 21: Failure Prob. of Degradable Quad with Partial Fail-Stop

37

Another approach is to use a self-test program to diagnose the faulty processor in the dual.

This is modeled in the same manner. In this case, PFS is the probability that the self-test

program correctly diagnoses the faulty processor and the system successfully reconfigures.

7 Reconfiguration By Sparing

Three categories of spares are possible--cold spares, warm spares and hot spares. Some-

times systems are designed using spares which are unpowered until brought into the active

configuration. This is done because unpowered spares usually have a lower failure rate than

powered (hot) spares. If the failure rate of the inactive spare is the same as an active pro-

cessor it is called a hot spare. If the failure rate of an inactive spare is zero, then it is called

a cold spare. If the failure rate is somewhere in between 0 and the active processor rate it is

called a warm spare. If

A, = failure rate of an inactive spare

Ap = failure rate of an active processor
/

then

cold spare: $, = 0

warm spare: 0 < A, < Ap

hot spare: $, = Ap

The disadvantage of an unpowered spare (i.e. cold or warm) is that it must be initialized

during reconfiguration whereas a hot spare can be maintained with memory already loaded.

This can lead to a longer reconfiguration time. Thus, depending upon the strategy used, the

model parameter values "&'ill be different. Some reliability programs, such as CARE III [9],

explicitly assume that the spares are hot.

7.1 Triad with Two Cold Spares

In this model a new form of reconfiguration is investigated. Instead of degrading the configu-

ration upon detection of a faulty processor, a spare processor is brought into the configuration

to replace the faulty one. For simplicity, in this model it is assumed that the spares do not

fail (i.e. cold) while not in the active configuration. The issues associated with failing spares

will be considered in subsequent examples. In the model of figure 22 it is assumed that the

reconfiguration process is described by distribution F(t) which is assumed to be independent

of the system state. The SURE input is:

LAHBDA = le-4;
MEANKEC = le-2;
STDREC : le-3;

(* Failure ra_e of processor *)
(* Mean reconfigura_ion time *)
(* Standard deviation of roconfig, time *)

38

C 3A _<

(

)_ 2A

F(t)

(
F(t)

2A

Figure 22: Model of Triplex with 2 Cold Spares

1,2 = 3,LAMBDA;
2,3 = 2,LAMBDA;
2,4 = <MEANKEC,STDKEC>;
4,$ = 3*LAMBDA;
$,6 = 2*LAMBDA;
5,7 = <MEANREC,STDREC>;
7,8 = 3*LAMBDA;
8,9 = 2*LAMBDA;

State 1 of this model represents the initial system with three active processors and two

spare processors. The system is in state 2 when one of the three active processors has failed.

There are two transitions leaving state 2: near-coincident failure of one of the two remaining

active processors and replacement of the f_led active processor with a spare. In state 4,

the system consists of three active processors plus one remaining cold spare. Once a cold

spare processor is brought into the active configuration, it has the same failure rate as the

other active processors. Thus, the transition from state 4 to state 5 has rate 3')_. State 5

has the same transitions leaving it as sta_ 2. Once the system reaches state 7, there are no

remaining cold spare processors.

7.2 Triad with Two Warm Spares

If we assume the system has perfect detection of failed spare processors, the model developed

above can be easily modified to include spare failures. As shown in figure 23, this simply

39

F(t)

r

Figure 23: Model of Triplex with 2 Warm Spares

requires the addition of two transitions. The transition from state 1 to state 4 represents

the failure of one of the two spare processors before either of them is brought into the active

configuration. The rate for this transition is 2*7, where _, is the failure rate for a warm spare.

The transition from state 4 to state 7 represents the failure of the remaining spare processor

after the first spare processor has either failed or been brought into the active configuration

to replace a failed active processor. The SURE input is:

LAMBDA = le-4; (* Failure rate of active processor *)

GAMMA = le-5; (* Failure rate of warm spare _rocessor *)
MEANKEC = Ie-2; (* Mean reconfiguration time *)

STDREC = le-3; (* Standard deviation of reconfi E. time *)

12=
14=
23=
24=

45=
47=

5,6 =
5,7 =
7,8 =
8,9 =

3*LAMBDA;
2*GAMMA;

2*LAMBDA;
<MEANREC,STDREC>;
3*LAMBDA;
GAMMA;
2*LAMBDA;
<MEANREC,STDREC>;
3*LAMBDA;
2*LAMBDA;

The same model can be used to model a system with hot spares by assigning the spare failure

rate 7 to the same value as the active processor failure rate _. The probability of failure as a

4O

10-3

10 -4

lO-S

10-7

10-s

10-9

10-9

T 1000

..T = 100

...T = 10

I I I Z

10-8 10-v 10-6 10-5 10-4

Figure 24: Failure Prob. of Triplex with 2 Warm Spares

function of the spare failure rate is plotted in figure 24 for three mission times--10,100 and
1000 hours.

In this section we made several modeling assumptions, such as perfect detection of failed

spare processors and no state-dependent recovery rates. These assumptions significantly

simplified the reliability models in this section. In section 9 we will model systems without

making these simplifying assumptions and will investigate more complex systems which use

several different kinds of reconfiguration and which consist of several subsystems. Models

of complex systems are often very large. As complexity is added to a system it quickly

becomes impractical to enumerate all of the states and transitions of a model by hand. In

the following section a simple but expressive language is introduced for specifying Markov or

semi-Markov models. This language serves as the input language for the ASSIST computer

program which automatically generates the states and transitions of the model. The output

of the ASSIST program can be directly processed by the SURE program.

41

8 The ASSIST Model Specification Language

A computer program was developed at the Langley Research Center to automatically gen-

erate semi-Markov models from an abstract, high-level language. This program, named the

Abstract Semi-Markov Specification Interface to the SURE Tool (ASSIST), is written in

Pascal and runs on the VMS and Unix operating systems [14, 15]. The ASSIST program

generates a file containing the generated semi-Markov model in the format needed for input

to a number of Langley-developed Markov or semi-Markov reliability analysis programs, such

as SURE or PAWS. The abstract language used for input to ASSIST is described in this

section. Only the features of the language necessary for understanding the models in this

paper are presented. For more detailed information about ASSIST, the reader is referred to

[14]. The process of describing a system in this abstract language also forces the reliability

engineer to clearly understand the fault tolerance strategies of the system, and the abstract

description is useful for communicating and validating the system model.

The ASSIST program is based on concepts used in the design of compilers. The ASSIST

input language is used to define rules for generating a model. These rules are first applied to

a "start state". The rules create transitions from the start state to new states. The program

then appties the rules to the newly created states. This process is continued until all of

the states are either death states or have already been processed. The expressiveness of the

ASSIST language is derived from the use of a "recursive" semantics for its constructs.

The ASSIST input language can be used to describe any state space model. Its full

generality makes it useful for specifying Markov and semi-Markov models, even when it is

not necessary to generate the model. The ASSIST language can serve as a convenient vehicle

for discussing and analyzing complex state-space models without having to specify all of the

states and transitions of the model by enumeration.

8.1 Abstract Language Syntax

A formal description of the language is not presented. Nevertheless, it is necessary to define

a few conventions to facilitate description of the language:

1. All reserved words will be capitalized in typewriter-style print.

2. Lowercase words which are in italics, such as const, indicate items which are to be

replaced by something defined elsewhere.

3. Items enclosed in square brackets [] can be omitted.

4. Items enclosed in braces { } can be omitted or repeated as many times as desired.

The language consists of 6 types of statements:

42

1. The

2. The

3. The

4. The

5. The

constant-definition statement

SPACE statement

START statement

DEATHIF statement

PRUNEIF statement

6. The TRANT0 statement

Each of these statements is discussed in the following sections.

8.1.1 Constant-Definition Statement

A constant-definition statement equates an identifier consisting of letters and digits to a

number. For example:

LAMBDA = 0.0052;

RECOVER = 0.005 ;

Once defined, an identifier can be used instead of the number it represents. In the following

sections, the phrase const is used to represent a constant which can be either a number or a

constant identifier. Constants can also be defined in terms of previously defined constants:

LAMBDA = 1E-4;

GAMMA = IO*LAMBDA;

In general the syntax is

_dent = expression;

where expression is a legal FORTRAN/Pascal expression. Both () and [] can be used for

grouping in the expressions. The following commands contain legal expressions:

ALPHA = 1E-4;

RECV = 1.2*EXP(-3*ALPHA) ;

DELTA = 1.2*[(ALPHA + 2.3E-5)*RECV + I/ALPHA];

All of the constant definitions are printed in the SURE model file so that they may be

used by the SURE program. In addition, any statements in the ASSIST input file that

are enclosed within double quotes are copied directly into the SURE model file and are not

otherwise processed by the ASSIST program. For example, if a user wished to be prompted

for the value of 7 by the SURE program instead of by the ASSIST program, and he wished

to see the effects of varying the value of _ exponentially, he could include the following

statements in his ASSIST input file:

43

''INPUT GAMMA;''

''LAMBDA = 1E-4 TO* IE-9;"

8.1.2 SPACE Statement

This statement is used to specify the state space on which the Markov model is defined.

Essentially, the state space is defined by an n-dimensional vector where each component of

the vector defines an attribute of the system being modelled. In the SIFT-like architecture

example of figure 13, the state space is (NW,NF). This would be defined in the abstract

language as

SPACE = (NW: 0..6, NF: 0..6);

The 0..6 represents the range of values over which the components can vary. The lower

bound of the range must be greater than or equal to 0, and the upper bound must be greater

than the lower bound and less than or equal to 255. This maximum upper bound value

can be easily changed by modifying a constant and recompiling the ASSIST program. The

number of components (i.e., the dimension of the vector space) can be as large as desired.

In general the syntax is:

SPACE = (ident[: const., const] {, ident[: const .. const] });

The range specification is optional and defaults to a range from 0 to 255. The identifiers,

ident, used in the SPACE statement are referred to as the "state space variables".

8.1.3 START Statement

This statement indicates the state from which the ASSIST program will initiate the recursive

model generation. This state usually corresponds to the initial state of the system being

modeled, i.e., the probability the system is in this state at time 0 is 1. In the SIFT-like

architecture example in figure 13, the initial state is (6,0). This is specified in the abstract

language by:

START = (6,0);

In general the syntax is:

START = (const {, const });

The dimension of the vector must be the same as in the SPACE statement.

44

8.1.4 DEATHIF Statement

The DEhTHIF statement specifies which states are death sta_es, i.e., absorbing states in the

model. The following is an example in the space (DIMI: 2..4, DIM2: 3..5)

DEATHIF (DIM1 = 4) OR (DIM2 = 3);

This statement defines (4,3), (4,4), (4,5), (2,3), and (3,3) as death states. In genera] the

syntax is

DEATHIF expression ;

The expression in this statement must be a Boolean expression. A Boolean expression may

use the logical operators 'AND,' 'OR' and 'NOT.'

8.1.5 PRUNEIF Statement

A model of a system with a large number of components tends to have many long paths

consisting of one or two failures of each type of component before a condition of system

failure is reached. Because the occurrence of so many failures is unlikely during a short

mission, these long paths typically contribute insignificant amounts to the probability of

system failure. The dominant failure modes of the system are typically the short paths to

system failure consisting of failures of "like" components. Model pruning can be used to

eliminate the long paths to system failure by conservatively assuming that system failure

occurs earlier on those paths.

The PRUNEIF statement specifies which states are prune states, i.e., conservative absorb-

ing states in the model. The syntax for the PRUNEIF statement is the same as for the DEATHIF

statement:

PRUNEIF expression ;

The expression in this statement must be a Boolean expression. The use of the PRUNEIF

statement to reduce the size of a model is discussed and demonstrated in section 12.2.

8.1.6 TRANTO Statement

This is the most important statement in the language. It is used to describe and consequently

generate the model in a recursive manner, fhe following statement generates all of the fault-

arrival transitions in the figure 1 model:

IF NW > 0 TRANTO (NW-I, NF+I) BY NW*LAMBDA;

The simplest syntax for a TRANTO statement is

45

IF expression TRANT0 destination BY expression;

The first expression following the IF must be Boolean. Conceptually, this expression

determines whether this rule applies to a particular state. For example, in the state space

SPACE = (hl: 1..5, h2: 0..1), the expression (A1 > 3) AND (A2 = 0) is true for states

(4,0) and (5,0) only.
The destination vector following the TRhNT0 reserved word defines the destination state

of the transition to be added to the model. The destination state can be specified using

positional or assigned values.

The syntax for specification of the destination by positional values is as follows:

(expression, {, expression})

where the expressions listed define each state space variable value for the destination state.

An expression must be included for every state space variable defined in the SPACE statement,

including every array element. Each expression within the parentheses must evaluate to an

integer. For example, if the state space is (X1, X2) and the source state is (5,3), then the

vector (X1 + 1,X2 - 1) refers to (6,2).

The syntax for specification of the destination by assigned values is:

ident = expression {, ident = expression }

where ident is a state space variable and expression is an integer expression. The assignments

define the destination state of a transition by specifying the change in one or more state

space variable values from the source state to the destination state. There can be as many

assignments as there are state space variables. State space variables that do not change

need not be specified. The two syntaxes cannot be mixed in the same statement, and the

destination expression cannot be within parentheses when assigned values are to be used.

The expression following the BY indicates the rate of the transition to be added to the

model. This expression must evaluate to a real number. The user may include constants

names in the rate statement that are not defined in the ASSIST file. These names are simply

copied into the rate expressions in the model file to be defined during execution of the SURE

program. The ASSIST program also allows the user to concatenate identifiers or values in

the rate expression using the "' character. The use of this feature is demonstrated in section

10.5.

The condition expression of the TRANT0 statement can be nested as follows:

IF expression THEN

{ multiple TRANTO statements or TI_NTO clauses }

[ELSE

{ multiple TlqANTO statements or TI_NT{3 clauses }]

ENDIF;

46

wherea TRANTOclause is of the form:

TRANTO destination BY expression;

A TRANT0 clause may not appear by itself without a condition expression. If the IF is

not followed by a THEN, then only one TRANT0 clause may be included, and no ELSE clause

or ENDIF may be used. If the IF is followed by a THEN, then an optional ELSE clause may be

included, and the IF statement must be terminated with an F__DIF. The THEN clause and the

optional ELSE clause may contain multiple TRAIfr0 statements. Every rate expression must

be followed by a senficolon, and the end of the entire nested statement must be followed with

a semicolon.

State space variables may be used in any of the expressions of the TRANT0 statement. The

value of a state space variable is the corresponding value in the source state to which the

TRANT0 statement is being applied. For example, if the TRANT0 statement is being applied

to state (4,5) and the state space was defined by SPACE = (A: O..10, Z: 2..15) then A

= 4 and Z = 5.

8.1,7 Model Generation Algorithm

The ASSIST program generates the model according to the following algorithm:

Initialize READY-SET to contain the start state only

WHILE READY-SET is not empty DO

Select and remove a state from READY-SET.

IF the selected state does not satisfy a DE/tTHIF or PRUNEIF statement THEN

Apply each TRA,IgT0 rule to the selected state as follows:

IF the TRANT0 if-expression evaluates to TRUE THEN

Add the transition to the model.

IF the destination state is new, add it to the READY-SET
ENDIF

ENDIF

ENDWHILE

The ASSIST program builds the model from the start state by recursively applying the

transition rules. A list of states to be processed, the Ready Set, begins with only the start

state. Before application of a rule, ASSIS'I checks all of the death conditions to determine if

the current state is a death state. Since a death state denotes system failure, no transitions

can leave a death state. Each of the TPANTO rules is then evaluated for the nondeath state. If

the condition expression of the TRANTO rule evaluates to true for the current state, then the

destination expression is used to determine the state space variable values of the destination

state. If the destination state has not already been defined in the model, then the new state

47

is addedto the Ready Set of states to be processed. The rate of the transition is determined

from the rate expression, and the transition description is printed to the model file. When

all of the TRANT0 rules have been applied to it, the state is removed from the Ready Set.

When the Ready Set is empty, then all possible paths terminate in death states, and model

building is complete.

8.2 Illustrative Example: SIFT-Like Architecture

Now we can specify the model of figure 13 in the language:

NP = 6;
LAMBDA = IE-4;
DELTA = 3.6E3;

(* Number of processors inizially *)
(* Yaul% arrival ra%e *)
(* Recovery ra%e *)

SPACE = (NW: O..NP, (* Number working processors *)
NF: 0..NP); (* Number faulty processors *)

START = (NP,O);

IF NW > 0 TRANT8 (NW-I,NF+I) BY NW*LAMBDA;
IF NF > 0 TRANTO (NW, NF-I) BY FAST NF*DELTA;

(* Fault arrivals *)
(* System recovery *)

DEATHIF NF >= NW; (* 5ys%em failure if majori%y no% working *)

The first three lines equate the identifiers NP, LAMBDA, and DELTA to specific values.

The next 2 lines define the state space using the SPACE command. For this system two

attributes suffice to define the state of the system:

NW = the number of working processors in the configuration

NF = the number of faulty processors in the configuration

The SPACE statement declares that the state space is 2-dimensional, that the first dimension

is named NW and has domain 0 to NP and that the second dimension is NF and has domain

0 to NP. The START statement declares that the construction of the model will begin with

the state (NP,0). The next two TI_NT0 statements define the rules for building the model.

Informally these rules are:

1. Every working processor in the current configuration fails at rate LAMBDA.

2. The system removes faulty processors at rate DELTA.

The informal rule is easily converted into an ASSIST statement. The phrase "Every working

processor in the current configuration" becomes:

IF NW > 0

48

Note that if NW is greater than zero there is a working processor, so a transition should be

created. The phrase "fails" is captured by

TRANTO NW = NW + I

This says that the destination state is obtained from the current state by incrementing the

NW component by 1. The phrase "at rate LAMBDA" is captured by

BY NW*LAMBDA

This declares that the rate of the generated transition is NW*LAMBDA. The identifier

LAMBDA which represents tile failure rate is muliplied by NW because any of the working

processors can fail. Each processor fails at rate LAMBDA. Therefore the rate that "any"

processor fails is NW*LAMBDA.

The second rule is translated into ASSIST syntax in a similar manner. A faulty processor

(i.e. NF > 0) is removed (i.e. NF = NF - 1) at rate DELTA (i.e. total rate is NF*DELTA):

IF NF > 0 TKANTO (NW, NF-1) BY FAST NF*DELTA;. (* system recovery *)

The keyword FAST alert, s the SURE program that this transition is a fast recovery and not

a failure. The SURE program assumes that the transition is exponentially distributed with

rate DELTA and automatically calculates the mean and standard deviation. Alternatively,

the user could specify this TRANT0 rule as follows:

IF NF > 0 TRANTO (NW, NF-I) BY <MU,SIG>; (* system recovery *)

The advantage of this form is that the corectness of the solution does not depend upon an

assumption that the recovery distribution is exponential.

The DEATHIF statement defines the system failure states. Informally, if the number of

faulty processors is greater than or equal to the number of working processors, the system

fails. This is translated into

DEATHIF NF >= NW

9 Reconfigurable Triad Systems

In this section systems which use both sp_ring and degradation to accomplish reconfiguration
will be explored. Even in the first example, a triad with cold spares, the reconfiguration

process changes when the supply of spares is exhausted. The later examples add more detail

to more closely capture the behavior of the spares. The models in this section demonstrate

the flexibility of the semi-Markov modeling approach.

49

9.1 Triad with Cold Spares

A system consisting of a triad with a set of cold spares (i.e. they do not fail while inactive)

will be explored. The number of initial spares is defined using a constant, NSI. This is done

so that the initial number of spares can be changed by altering only one hne of the ASSIST

input. (Although the change involves a change of only one line in the input file, the size of

the model generated varies significantly as a function of this parameter). For simplicity, it

is assumed in this section that spares do not fail until they are made active. The system

replaces failed processors with spares until they are a_ depleted. Then the system degrades

to a simplex.

NSI = 3;
LAMBDA = IE-4;
MU = 7.9E-5;
SIGMA = 2.56E-5;

(* Number of spares initially *)
(* Failure ra_e of active processors *)
(* Mean time to replace with spare *)
(* S_an. dev. of time to replace with spare *)

MU_DEG = fi.3E-5;
SIGMA_DEG = 1.74E-5;

(* Mean time to degrade to simplex *)
(* S_an. dev. of time to degrade to simplex *)

SPACE = (NW: 0..3,
NF: 0..3,
NS: O..NSI);

(* Number of working processors *)
(* Number of failed active processors *)
(* Number of spares *)

START = (3,0,NSI);

IF NW > 0 (* Processor failure *)
TRANT0 (NW-I,NF+I,NS) BY NW*LAMBDA;

IF (NF > O) AND (NS > O) (* Non-failed spare becomes active *)
TRANTO (NW+I,NF-1,NS-I) BY <MU,SIGMA>;

IF (NF > O) AND (NS = O) (* No more spares, degrade to simplex *)
TRANTO (1,0,0) BY <MU_DEG,SIGMA_DEG>;

DEATHIF NF >= NW;

The first statement defines a constant NSI which represents the number of initial spares. The

value of this constant can be changed to generate models for systems with various numbers of

initial spares. The next 5 lines define con%ants which are not used directly by ASSIST, but are

passed along verbatim to SURE for computation purposes. The SPACE statement defines the

domain of the state space. For this model a 3-dimensional space is needed. The components

of the space are NW: number of working processors in the active configuration, NF: number

of failed processors in the active configuration, and NS: the number of spares available. The

initial configuration is defined with the START statement, i.e. (3,0,NSI) which indicates that

NW=3, NF=0 and NS=NSI initially. The next three statements define the rules which are

used to build the model. The first of these statements defines processor failure. As long

as there are working processors (i.e. NW > 0), the rule adds a transition. The destination

state is derived from the source state according to the formula (NW-1, NF+I, NS). This

5O

is short-hand notation for NW = NW-1, NF = NF+I, NS = NS. The rate of the resulting

transition is NW*LAMBDA. For example, if the current state were (2,1,3) this rule would

generate a transition to (1.2,3) with rate 2*LAMBDA. The next rule only applies to states

where (NF > 0) AND (NS > 0), i.e. states with a failed processor and with available

spares. The destination state is derived from the current state by the formula (NW+I, NF-

1, NS-1), i.e. the number working NW is increased by 1, the number faulty is decremented

and the number of spares is decremented. This of course corresponds to the replacement of

a faulty processor with a spare. The last TRANT0 rule describes how the system degrades to

a simplex. This occurs when no spares are available and a processor has failed, i.e. (NF >

0) AND (NS = 0). The transition is to the state (1,0,0). The transition occurs according

to a distribution with mean MU_DEG and standard deviation SIGMA./)EG. This is given

in SURE notation: <MU_DEG, SIGMA_DEG>. Finally, the conditions defining the death states

are given. The formula NF >= NW defines the states which are death states, i.e. whenever

the number of faulty processors are greater than or equal to the number of good processors.

The following session was performed on this model stored in file TPNFS.AST:

$ ASSIST TPNFS

ASSIST VERSION 6.0
The Front End Routine FER SURE

PROCESSING TIME = 0.52
NUMBER OF STATES IN MODEL = 10
NUMBER OF TRANSITIONS IN MODEL = 13
5 DEATH STATES AGGREGATED INTO STATES I - 1

Thank you for using ASSIST, FER SURE

$ SURE

SURE V7.1 NASA Langley Research Center

i? READ TPNFS

2: NSI = 3;
3: LAMBDA = IE-4;
4: MU = 7.9E-5;
5: SIGMA = 2.56E-5;
6: MU_DEG = 6.3E-5;
7: SIGMA_DE = 1.74E-5;
8:
9:

10:
11: 2(* 3,0,3 *)
12: 3(* 2,1,3 *)
13: 3(* 2,1,3 *)
14: 4(* 3,0,2 *)
15: 5(* 2,1,2 *)
16: 5(* 2,1,2 *)
17: 6(* 3,0,1 *)
18: 7(* 2,1,1 *)
19: 7(* 2,1,1 *)

3(* 2,1,3 *) = 3*LAMBDA;
1(* 1,2,3 *) = 2*LAMBDA;
4(* 3,0,2 *) = <MU,SIGMA>;
S(* 2,1,2 *) : 3*LAMBDA;
I(* 1,2,2 *) : 2*LAMBDA;
6(* 3,0,1 *) = <MU,SIGMA>;
7(* 2,1,1 *) = 3*LAMBDA;
1(* 1,2,1 *) = 2*LAMBDA;
8(* 3,0,0 *) = <MU,SIGMA>;

51

Number of Spares Number of States Number of Transitions

0

1

2

3

lO

I00

12

15

36

306

4

7

10

13

34

304

Table 1: Model Sizes for Triad of Processors with Spares

20:
21:
22:
23:
24 :
25:
28 :
27:

8(* 3,0,0 *),
9(* 2,1,0 *),
9(* 2,1,0 *),

10(* 1,0,0 *),

9(* 2,1,0 *) = 3*LAMBDA;
1(* 1,2,0 *) = 2*LAMBDA;

i0(* 1,0,0 *) = <MU_DEG,SIGMA_DEG>;
1(* 0,1,0 *) = I*LAMBDA;

(* NUMBER OF STATES IN MODEL = I0 *)
(* NUMBER OF TRANSITIONS IN MODEL = 13 *)
(* 5 DEATH STATES AGGREGATED STATES 1 - 1 *)

0.83 SECS. TO READ MODEL FILE
287 RUN

MODEL FILE = TPNFS.MOD SURE V7.1 7-JUN-1989 13:39:09

LOWERBOUND UPPERBOUND
.................................

4.71208E-II 4.74718E-11

5 PATH(S) PROCESSED
0.060 SECS. CPU TIME UTILIZED
29? EXIT

COMMENTS RUN #1

The value of NSI can be changed to model systems with different numbers of spare

processors initially. As shown in table 9.1, changing this single value can have a significant
effect on the size of the model generated.

9.2 Triad with Instantaneous Detection of Warm Spare Failure

This section builds on the previous model by allowing the spare to fail. However, the model

is still simplistic in that it assumes that the system always detects a failed spare. Thus, a

failed spare is never brought into the active configuration:

52

NSI = 3;
LAMBDA = IE-4;
GAMMA = IE-6;
MU = 7.9E-5;
SIGMA = 2.56E-5;

MU_DEG = 6.3E-5;
SIGMA_DEG = 1.74E-5;

(* nwnber of spares initially *)
(* failure rate of active processors *)
(* failure ra_e of spares *)
(* mean _ime to replace with spare _)
(* start, dev. of _ime to replace with spare *)

(* mean time to degrade to simplex *)
(* stan. dev. of time to degrade to simplex *)

SPACE = (NW: 0..3,
NF: 0..3,
NS: O..NSI);

(* number of working processors *)
(* number of failed active procssors *)
(* number of spares *)

START = (3,0,NSI);

IF NW > 0 (* a processor can fail *)
TRANTO (NW-I,NF+I,NS) BY NW*LAMBDA;

IF (NF > O) AND (NS > O) (* a spare becomes active *)
TRANTO (NW+I,NF-I,NS-I) BY <MU,SIGMA>;

IF (NF > O) AND (NS = O) (* no more spares, degrade to simplex *)
TRANTO (I,0,0) BY <MU_DEG,SIGMA_DEG>;

IF NS > 0 (* a spare fails and is detected *)
TRANTO (NW,NF,NS-I) BY NS*GAMMA;

DEATHIF NF >= NW;

Since failed spares can never be brought into the active configuration, there is no reason

to keep track of these spares once they fail. Thus, no state space variable was defined to

keep track of the number of failed spares, and the transition depicting a spare failing simply

decrements the number of spare processors by one.

9.3 Degradable Triad with Non-Detectable Spare Failure

In the previous models we assumed that the spare does not fail while inactive or that its

failure was immediately detected. These are clearly non-conservative assumptions. In this

example we will investigate _he other extreme--not only can the spares fail (i.e. warm) but

the spare's fault remains undetectable until brought into the active configuration. The model

in this example utilizes a different failure rate for the spares than for the active processors.

This failure rate is varied over a range (up to the active processor rate) to see the advantage

of cold spares. This comparison would be n_re reahstic if the increase in recovery time due

to having to initialize the warm spare had been modeled.

NSI = 3;
LAMBDA = 1E-4;
GAMMA = 1E-6;
MU = 7.9E-5;
SIGMA = 2.56E-5;

(* number of spares ini_ially *)
(* failure ra_e of active processors *)
(* failure rate of spares *)
(* mean time to replace with spare *)
(* start, dev. of time to replace wi_h spare *)

53

MU_DEG = 6.3E-5;
SIGMA_DEG = 1.74E-5;
SPACE = (NW: 0..3,

NF: 0..3,
NWS: O..NSI,
NFS: O..NSI);

(* mean $ime $o degrade _o simplex *)
(* s%an. dev. of %ime _o degrade %0 simplex *)
(* number of working processors *)
(* number of failed active processors *)
(* number of working spares *)
(* number of failed spares *)

START = (3,0,NSI,O);
PRG = NWS/(NWS+NFS); (* probabili%y of switching in a good spare *)

(* processor failure *)
IF NW > 0 TRANTO (NW-I,NF+I,NWS,NFS) BY NW*LAMBDA;

IF (NF > O) AND (NWS+NFS > O) THEN (* reconfigure using a spare *)
(* a good spare becomes active *)

IF NWS > 0 TRANTD (NW+I,NF-I,NWS-1,NFS) BY <MU,SIGMA,PRG>;

(* a failed spare becomes ac%ive *)
IF NFS > 0 TRANT0 (NW,NF,NWS,NFS-I) BY <MUoSIGMA,I-PRG>;

ENDIF;

IF (NF > O) AND (NWS+NFS = O) (* no more spares, degrade %o simplex *)
TRANTO (I,0,0,0 BY <MU_DEG,SIGMA_DEG>;

IF NWS > 0 (* a spare fails *)
TKANTO (NW,NF,NWS-I,NFS+I) BY NS*GAMMA;

DEATHIF NF >= NW;

When reconfiguration occurs, the probability of switching in a good spare (_ersus a failed

spare is equal to the current proportion of good spares to failed spares in the system. The

variable PRG is used to calculate this probability. When all of the spares are good, the

probability of switching in a good spare is one, and the probability of switching in a bad

spare is zero. Conversely, when all of the spares have failed, the probability of switching in

a good spare is zero, and the probability of switching in a bad spare is one. The tests NWS

> 0 and NFS > 0 check for these two cases and prevent the generation of a transition when

it is inappropriate.

9.4 Degradable Triad with Partial Detection of Spare Failure

If the system is designed with off-line diagnostics for the spares, this must be included in the

model. Two aspects of an off-line diagnostic must be considered: (1) a diagnostic usually

cannot detect all possible faults and (2) a diagnostic requires time to execute. The first

aspect is sometimes referred to as the "coverage" of the diagnostic. We will avoid the term

"coverage" since it is used in so many different ways by different people and is thus confusing.

Instead, we will just call it the "fraction of detectable faults" and assign it an identifer, K. It

is necessary to expand the state space to keep track of whether a fault in a spare is detectable

or undetectable:

54

SPACE = (NW: 0,.3,
NF: 0..3,
NWS: O..NSI,
NDFS: O..NSI,
NUFS: O..NSI);

(* ntunber of working processors *)
(* number of failed active procssors *)
(* number of working spares *)
(* number of detectable failed spares *)
(* number of undeteczable failed spares *)

The second aspect requires thal.-a rule be added to generate transitions which decrement

the NDFS state-space variable according to some fast. general recovery distribution:

IF NDFS > 0 (* "detectable" spare-failure is detected *)
TRANTO (NW,NF,NWS,NDFS-1,NUFS) BY <MU_SPD,SIGMA_SPD>;

No such transition is generated for "NUFS" faults.

The active processor failure TRANTO rule is the same as in the previous example, except

that the state space is larger. The spare failure TRANT0 rule must be altered to include

whether the failure is detectable or not:

IF NWS > 0 THEN (* a spare fails *)
TRANTO (NW,NF,NWS-I,NDFS+I,NUFS) BY K*NS*GAMMA; (* detectable fault *)
TRANTO (NW,NF,NWS-I,NDFS,NUFS+$) BY (I-K)*NS*GAMMA; (* undetectable faul% *)

ENDIF;

Note that the rates are multipled by K and (l-K).

The reconfiguration rule is now more complicated than in the previous example. Three

possibilities exist: (1) the faulty active processor is replaced with a working spare, (2) the

faulty processor is replaced with a spare containing a detectable fault and (3) the faulty

processor is replaced with a spare containing an undetectable fault. The probability of each

of these cases are PRW, PRD, and PRU, respectively, defined as follows:

PRW = NWS/(NWS+NDFS+NUFS);

PRD = NDFS/(NWS+NDFS+NUFS);
PRU = NUFS/(NWS+NDFS+NUFS);

(* prob. working spare is used *)
(* prob. spare w/ detectable fault is used *)
(* prob. spare w/ undezeczable fault is used *)

The reconfiguration rule is:

IF (NF > O) AND (NWS+NDFS+NUF5 > O) THEN (* a spare becomes active *)
IF NWS > 0 TRANTO (NW+I,NF-I,NWS-I,NDFS,NUF5) BY <MU,SIGMA,PRW>;
IF NDFS > 0 TR4NTO (NW,NF,NWS,NDFS-I,NUFS) BY <MU,SIGMA,PRD>;
IF NUFS > 0 TRANTO (NW,NF,NWS,NDFS,NUFS-I) BY <MU,SIGMA,PRU>;

ENDIF;

The complete model is:

NSI = 3;
LAMBDA = IE-4;
GAMMA = 1E-6;
MU = 7.9E-5;
SIGMA = 2.56E-5;

(* number of spares ini%ially *)
(* failure raze of active processors *)

(* failure rate of spares *)
(* mean _ime to replace with spare *)
(* start, dev. of time %o replace wizh spare *)

55

MU_DEG = 6.3E-5;
SIGMA_DEG = 1.74E-5;

(* mean time ¢o degrade ¢o simplex *)
(* start, dev. of time to degrade ¢o simplex *)

K = 0.9;

MU_SPD = 2.6E-3;
SIGMA_SPD = 1.2E-3;

(* fraction of faults that the

spare off-line diagnostic can detec¢ *)
(* mean time %o diagnose a failed spare *)
(* s¢andard deviation of time _o diagnose *)

SPACE = (NW: 0..3,
NF: 0..3,

NWS: O..NSI,
NDFS: O..NSI,
NUFS: O..NSI);

(* number of working processors *)
(* number of failed active procssors *)

(* number of working spares .)
(* number of de$ec_able failed spares *)
(* number of undeeectable failed spares *)

START = (3,0,NSI,O,O);

IF NW > 0 (* a processor can fail *)
TRANTO (NW-1,NF+I_NWS,NDFS,NUI_S) BY NW*LAMBDA;

IF NWS > 0 THEN (* a spare fails *)
TRANT0 (NW,NF,NWS-1,NDFS+I,NUFS) BY K*NS*GAMMA; (* detectable fault *)
TRANTO (NW,NF,NWS-1,NDFS,NU?S+I) BY (1-K)*NS*GAMMA; (* unde%ec_able fault *)

ENDIF;

PRW = NWS/(NWS+NDFS+NUFS); (* prob. a working spare is reconfiguzed *)
PRD= NDFS/(NWS+NDFS+NUFS); (* prob. a spare w/ de%. f. is reconfigured *)
PRU = NUFS/(NWS+NDFS+NUFS); (* prob. a spare w/ unde¢ f. is reconfigured *)
IF (NF > O) AND (NWS+NDFS+NUFS > O) THEN (* a spare becomes active *)

IF NWS > 0 TRANTO (N_+I,NF-I,NWS-I,NDFS,NUFS) BY <MU,SIGMA,PRW>;

IF NDFS > 0 TRANTO (NW,NF,NWS,NDFS-I,NUFS) BY <MU,SIGMA,PRD>;
IF NUFS > 0 TRANT8 (NW,NF,NWS,NDFS,NUFS-I) BY <MU,SIGMA,PRU>;

ENDIF;

IF (NF > O) AND (NWS+NDFS+NUFS = O) (* no more spares, degrade to simplex *)
TRANTD (1,0,0,0,0) BY <MU_DEG,SIGMA_DEG>;

IF NDFS > 0 (* "de%ec%able" spare-failure is de%ected *)
TRANTO (NW,NF,NWS,NDFS-I,NUFS) BY <MU_SPD,SIGMA_SPD>;

DEATHIF NF >= NW;

In this section, systems consisting of a single reconfigurable triad were modeled. In

the following section, systems consisting of multiple sets of these reconfigurable triads are

discussed.

56

10 Multiple Triads

This section starts with a simple model of two triads sharing a pool of cold spares. In later

models, various reconfiguration concepts are introduced and spare failures are included.

These models are then generalized to model more than two triads. Finally, the section

concludes with a general discussion of how to model multiple competing recoveries.

10.1 Two Triads with Pooled Cold Spares

In this section we will model a system which consists of two triads which operate inde-

pendently but replace faulty processors from a common pool of spares. When the pool of

spares runs out, the triads continuing operating with faulty processors and do not degrade

to simplex. The system fails when either triad has two faulty processors. This can happen

because a second fault occurs in a triad before the first faulty processor can be replaced by

an available spare or because the supply of spares to replace the faulty processors has been

exhausted. For this model, it is assumed that the spares do not fail while they are inactive.

To facilitate performing trade-off studies, we will use the ASSIST INPUT statement to

define a constant to represent the initial number of spares in the system. The ASSIST

program will query the user interactively for the value of this constant before generating the
model.

Since the triads do not degrade to a simplex configuration, there is no need to keep

track of the current number of processors in a triad. Thus, the state of each triad can be

represented by a single variable---NW, number working. Similarly, the spares do not fail

while they are inactive, so their state can be represented by a single variable--NS, number

of spares available. Thus, the state space is:

SPACE = (NWi, NW2, N_SPARES);

The full model description is:

(* TWO TRIADS WITH POOL OF SPARES *)

INPUT N_SPARES;
LAMBDA_P = IE-4;
DELTAI = 3.6E3;
DELTA2 = 6.3E3;

(* Number of spaces *)
(* Failure ra_e of ac$ive processors *)
(* Reconfigura_ion ra_e of triad I *)
(* Reconfigura$ion ra_e of _riad 2 *)

SPACE = (NWI,
NW2,
NS);

(* Number of ::orking processors in _riad I *)
(* Number of working processors in _riad 2 *)
(* Number of spare processors *)

START = (3, 3, N_SPARES);

(* Active processor failure *)
IF NWl > 0 TRANTO NWI = NWI-I BY NWI*LAMBDA_P;
IF NW2 > 0 TRANTO NW2 = NW2-1 BY NW2*LAMBDA_P;

57

(* Replace failed processor wi_h workinE spare *)
IF (NWI < 3) AND (NS > O) TRANTO NWI = NWI+I, NS = NS-I BY FAST DELTA1;
IF (NW2 < 3) AND (N$ > O) TRANTO NW2 = NW2÷I, NS = N$-I BY FAST DELTA2;

DEATHIF NW1 < 2;
DEATHIF NW2 < 2;

(* Two faults in triad I is sys%em failure *)
(* Two faul%s in triad 2 is system failure *)

The start state is (3, 3, N.SPARES) which indicates that both triads have a full complement

of working processors and the number of initial spares is N_SPARES. The first two TRAICr0

rules define the fault arrival process in each triad. This is accomplished by decrementing

either NW1 or NW2 depending upon which triad experiences the failure. The next two

TI_NTO rules define recovery by replacing the faulty processor with a spare. Note that this

is conditioned upon NS > 0--if there are no spares recovery cannot take place. The result

of reconfiguration is replacement of the faulty processor with a working processor (i.e. NWx

= NWx ÷ 1 for triad x) and depletion of 1 spare from the pool (i.e. NS = NS - 1). The

system fails whenever either triad experiences two or more coincident faults (i.e. (NWl <

2) or (NW2 < 2)).

This system has two different recovery processes--recovery in triad 1 and recovery in triad

2--that can potentially occur at the same time. Since this model was developed assuming

that the completion times for both recovery processes are exponentially distributed, the

SURE keyword FAST was used, and the SURE program will automatically calculate the

conditionaJ recovery rates wherever these two recovery processes compete. This feature was

described in section 5.2.7. Modeling of multiple competing recovery processes that are not

exponentially distributed is discussed in section 10.8. How to model systems in which the

competing recoveries are not independent are also discussed in that section.

10.2 Two Triads with Pooled Cold Spares Reducable to One

Triad

The model given above can be modified easily to describe a system that can survive with

only 1 triad. This strategy was used in the FTMP system [16]. If spares are available, the

system reconfigures by replacing a faulty processor with a spare. If no spares are available,

the faulty triad is removed and its good processors are added to the spares pool. There is

one exception, however. When there is only one triad left, the system maintains the faulty

triad until it can no longer out-vote the faulty processor, i.e. until the second fault arrival.

As before, this model assumes that the spares are cold--they do not fail while inactive.

The state space must be modified to indude the notion of whether a triad is active or not.

This is accomplished by setting NWx = 0 when triad x is inactive. The number of triads is

maintained in a state space variable NT. Although this is redundant--the number of active

58

triads can be determined by looking at NW1 and NW2--the inclusion of this extra state

space variable greatly simplifies the ASSIST input description. Thus, the state space is:

SPACE = (NW1,

NW2,

NT,

NS);

(* Number of working processors in triad I *)

(* Number of working processors in triad 2 *)
(* Number of active triads *)

(* Number of spare processors *)

The initial state is (3, 3, 2, N.SPARES). The DEATtIIF statement becomes:

DEATHIF (NWI = I) OR (NW2 = I);

Note that the statement DEATHIF (NW1 < 2) OR (NW2 < 2) ; would be wrong. This would

conflict with the strategy of setting NWx equal to 0 when triad x becomes inactive. Note

also that the condition (NW1 = 0) AND (NW2 = 0) is also not included. This clause could

be added but it would not change the model. This follows because the last triad is never

collapsed into spares. Thus, this condition can never be satisfied.

Next, we define two new constants OMEGA1 and OMEGA2 which define the rate at

which triads are collapsed when no spares are available:

OMEGAI = 5.6E3;

OMEGA2 = 8.3E3;
(* Collapsing ra_e of _riad I *)

(* Collapsin E rate of triad 2 *)

The fault arrival rules are the same as in the previous model. However, the reconfiguration

specification must be altered. The rules for each triad x are

IF (NWx = 2) AND (NS > O) TKANTO NWx = NWx+I, NS = NS-1

BY FAST DELTAx;

IF (NWx = 2) AND (NS = O) AND (NT > I) TRANTO NWx = O, NS = NS+2, NT = NT-I

BY FAST OMEGAx;

The first rule above defines reconfiguration by replacement with a spare. Thus, this rule is

conditioned by (NS > 0). The second rule defines the collapsing of a triad when no spares

are available, i.e. when NS = 0. Note that the condition (NT > 1) prevents the collapse of

the last triad. The complete model is:

(* TWO TRIADS WITH POOL OF SPARES --> I TRIAD *)

INPUT N_SPARES;

LAMBDAI = IE-4;

LAMBDA2 = 1E-4;

DELTA1 = 3.6E3;

DELTA2 = 6.3E3;

OMEGA1 = 5.6E3;

OMEGA2 = 8.3E3;

SPACE = (NWI,

NW2,

NT,

(* Number of spares *)

(* Failure rate of active processors *)

(* Failure ra_e of active processors *)

(* Reconfiguration rate of triad I *)

(* Reconfigura_ion rate of triad 2 *)

(* Collapsing rate of triad i *)

(* Collapsing rate of _riad 2 *)

(* Number of working processors in triad I *)

(* Number of working processors in triad 2 *)
(* Number of active triads *)

59

NS); (* Number of spare processors *)

START = (3, 3, 2, N_SPARES);

(* Active processor failure *)
IF (NW1 > O) TRANTO NW1 = NWI-1 BY NWI*LAMBDAI;

IF (NW2 > O) TKANTO NW2 = NW2-1 BY NW2*LAMBDA2;

(* Replace failed processor wi_h working spare *)
IF (NW1 = 2) AND (NS > O) TRANTO NW1 = NWI+I, NS = NS-1 BY FAST DELTA1;

IF (NW2 = 2) AND (NS > O) TRANTO NW2 = NW2÷I, NS = NS-1 BY FAST DELTA2;

IF (NW1 = 2) AND (NS = O) AND (NT > 1) TRANTO NW1 = O, NS = NS+2, NT = NT-1

BY FAST OMEGA1; (* Degrade _o one _riad only -- triad 2 *)

IF (NW2 = 2) AND (NS = O) AND (NT > 1) TRANTO NW2 = O, NS = NS+2, NT = NT-1

BY FAST OMEGA2; (* Degrade _o one _riad only -- triad I*)

DEATHIF (NWl = I) OR (NW2 = 1);

10.3 Two Degradable Triads with Pooled Cold Spares

The system modeled in this section consists of two triads which can degrade to a simplex.

However, unlike the previous example, this system requires the throughput of two processors.

Therefore, the system does not degrade to one triad. Instead, when no more spares are

available, the system degrades the faulty triad into a simplex. The extra non-faulty processor

is added to the spares pool.

In this system each of the two triads can be degraded into a simplex. Therefore, it is

necessary to add state space variables that indicate whether the active configuration is a

triad or simplex. Otherwise it is impossible to determine whether each state which satisfies

the condition NWx = 1 for triad x is a failed state (i.e. 1 good out of three) or an operational

state (i.e. 1 good out of 1). Thus, two state space variables, NC1 and NC2, are added to the

model to indicate the total number of processors in the current configuration of each triad.

If triad x still has three active processors, then NCx = 3; if triad x has already degraded to

a simplex, then NCx = 1. The complete state space is:

SPACE = (NCl, (* Number of active processors in _riad I *)

NWI, (* Number of working processors in _riad 1 *)

NC2, (* Number of active processors in _riad 2 *)

NW2, (* Number of working processors in _riad 2 *)

NS); (* Number of spare processors *)

The initial state is (3, 3, 3, 3, N_SPARES) where N_SPARES represents the number of

processors in the spares pool initially. The processor failure rules are the same as in previous

models. As expected, the reconfiguration rules must be altered. These rules for each triad

are

6O

IF (NWx < 3) AND (NCx = 3) AND (NS > O) TRANTO NWx = NWx+I, NS = NS-I
BY FAST DELTAx; (* Replace failed processor wi_h working spare *)

IF (NWx < 3) AND <NS = O) AND (NCx=3) TRANTO NCx = i, NWx = I, NS = NS+I

BY FAST OMEGAx; (* Degrade to simplex *)

where x represents triad 1 or triad 2. The first rule describes the replacement of a faulty

processor in a triad with a spare. Note that the condition (NCx = 3) has been added. Oth-

erwise states with NWx = 1 and NCx = 1 (i.e. a good simplex processor) would erroneously

have a recovery transition leaving them. The second rule describes the process of degrading

a triad to a simplex. Note that this is only done when no spares are available, i.e. NS = 0.

Also, the extra non-faulty processor is returned to the spares_pool, i.e. NS = NS + 1. The

DEATHIF conditions are:

DEATHIF 2*NWx <= NCx;

for each triad x. This restricts the operational states to only those where a majority of the

processors are working. The complete specification is:

(* TWO DEGRADABLE TRIADS WITH A POOL OF SPARES *)

INPUT N_SPARES;
LAMBDA1 = IE-4;
LAMBDA2 = 1E-4;
DELTA1 = 3.6E3;
DELTA2 = 6.3E3;
OMEGA1 = 5.6E3;
OMEGA2 = 8.3E3;

SPACE = (NCl,
NWI,
NC2,
NW2,
NS);

(* Number of spares *)
(* Failure ra_e of active processors *)
(* Failure rate of active processors *)
(* Reco_figuraZion ra_e of _riad I *)
(* Reconfiguration rate of triad 2 *)
(* Reconfigura_ion rate of _riad I *)
(* Reconfiguration rate of _riad 2 *)

(* Number of active processors in triad I *)
(* Number of working processors in triad I *)
(* Number of active processors in zriad 2 *)
(* Number of working processors in triad 2 *)
(* Number of spare processors *)

START = (3, 3, 3, 3, N_SPARES);

(* AcZive processor failure *)
IF NWI > 0 TRANTO NW1 = NWI-I BY NWI*LAMBDAI;
IF NW2 > 0 TRANTO NW2 = NW2-1 BY NW2*LAMBDA2;

(* Replace failed processor wizh working spare *)
IF (NWI < 3) AND (NCl = 3) AND (NS > O) TRANTO NWI = NWI+I, NS = NS-I

BY FAST DELTAI;
IF (NW2 < 3) AND (NC2 = 3) AND (NS > O) TRANTO NW2 = NW2+I, NS = NS-I

BY FAST DELTA2;

(* Degrade to simplex *)
IF (NWI < 3) AND (NS = O) AND (NCI=3) TRANTO NC1 = I, NWI = i, NS = NS+I

BY FAST OMEGA1;
IF (NW2 < 3) AND (NS = O) AND (NC2=3) TRANTO NC2 = I, NW2 = i, NS = NS+I

BY FAST OMEGA2;

61

DEATHIF 2*NWl <= NCI;
DEAITIF 2*NW2 <= NC2;

All of the previous models have used the simplifying assumption that spare processors

cannot fail until they are brought into the active configuration. While this assumption

significantly simphfies the modehng, it is too optimistic an assumption for many systems,

especially those with long mission times.

10.4 Two Degradable Triads with Pooled Warm Spares

The models presented above can be generahzed by allowing the spares to fail while inactive.

This is easily done if we make a simplifying assumption that the system can instantly detect

the failure of a warm spare. This can be accomphshed by adding the following statements

to the model descriptions:

LAMBDA_S = 1E-5; (* Failure raze of inactive warm spare *)

IF NS > 0 TRANTO NS = NS - I BY NS*LAMBDA_S;

If the failure of a warm spare is not detectable while it is inactive, the state space must

be enlarged by adding a new variable NFS to count the number of failed warm spares. The
above rules are modified to be:

LAMBDA_S = 1E-5; (* Failure rate of inactive warm spare *)

IF NS > NFS TRANTO NS = NS - 1 BY (NS-NFS)*LAMBDA;

Also the reconfiguration process must be generalized to include two distinct results: (1) a

faulty warm spare is broughi into the active configuration, and (2) a working warm spare is

brought into the active configuration.

Thus, the model presented in section 10.3 can be modified to describe a system of two

degradable triads with a pool of warm spares:

(* TWO DEGRADABLE TRIADS WITH A POOL OF WARM SPARES *)

INPUT N_SPARES;
LAMBDAI = IE-4;
LAMBDA2 = IE-4;
LAMBDA_S = IE-5;
DELTA1 = 3.6E3;

DELTA2 = 6.3E3;
OMEGA1 = 5.6E3;
OMEGA2 = 8.3E3;

SPACE = (NCl,

(* Number of spares *)
(* Failure rate of active processors *)
(* Failure rate of active processors *)
(* Failure rate of active processors *)
(* ReconfiEuration rate of triad I *)

(* Reconfiguration rate of triad 2 *)
(* Reconfigura_ion ra_e of _riad I *)
(* ReconfiEuration ra_e of triad 2 *)

(* Number of active processors in triad 1 *)

62

NWI,

NC2,
NW2,
NS,
NWS);

(* Number of working processors in triad I *)
(* Number of active processors in triad 2 *)
(* Number of working processors in triad 2 *)
(* Total number of warm spares *)

(* Number of working warm spares*)

START = (3, 3, 3, 3, N_SPARES, N_SPARES);

IF NWI > 0 TRANTO NWI = NWI-I BY NWI*LAMBDA1;
IF NW2 > 0 TRANTO NW2 = NW2-1 BY NW2*LAMBDA2;
IF NWS > 0 TRANTO NWS = NWS-I BY NWS*LAMBDA_S;

(* Active processor failure *)
(* Active processor failure *)
(* Warm spare failure *)

IF (NS > O) AND (NWS > O) THEN
IF (NWl < 3) AND (NCl = 3)

TRANTO NW1 = NWI+I, NS = NS-I, NWS = NWS -
BY FAST (NWS/NS)*DELTAI;

IF (NW2 < 3) AND (NC2 = 3) AND (NS > O)

TRANTO NW2 = NW2+I, NS = NS-1, NWS = NWS -
BY FAST (NWS/NS)*DELTA2;

ENDIF;

(, Replace with working spare *)

i

IF (NS > O) AND (NS > NWS) THEN (* Replace with failed spare *)
IF (NWI < 3) AND (NCI = 3)

TRANTO NS = NS-I BY FAST [(NS-NWS)/NSJ*DELTAI;
IF (NW2 < 3) AND (NC2 = 3)

TRANTO NS = NS-I BY FAST [(NS-NWS)/NS]*DELTA2;

ENDIF;

IF (NWI < 3) AND (NS = O) AND (NC1=3) (* Degrade so simplex *)
TRANTO NCl = 1, NWI = 1, NS = NS+I BY FAST 8MEGAI;

IF (NW2 < 3) AND (NS = O) AND (NC2=S) (* Degrade So simplex *)
TRANTO NC2 = I, NW2 = 1, NS = NS+I BY FAST OMEGA2;

DEATHIF 2*NW1 <= NC1;
DEATHIF 2*NW2 <= NC2;

10.5 Multiple Non-degradable Triads with Pooled Cold Spares

This section demonstrates development of a generalized description that can be used to model

an arbitrary number of triads. This will be accomplished by creating a general specification

that will work for any number of initial triads and having the ASSIST program prompt for

a specific value in order to generate a specific model.

For simplicity, we will first investigate a system which is incapable of collapsing a triad

into either a simplex or into spares. Thus, this system fails when any triad fails. We will

also simplify this first model by assuming we have cold spares that cannot fail until they are

brought into the active configuration. The complete generalized specification is:

(* MULTIPLE TRIADS WITH POOL OF COLD SPARES *)

63

INPUT N_TRIADS;
INPUT N_SPARES;
LAMBDA = IE-4;

(* Number of _riads ini_ially *)
(* Number of spares *)
(* Failure ra_e of active processors *)

SPACE = (NW: ARRAY[I..N_TRIADS] OF 0..3, (* Number working procs per %riad *)
NS); (* Number of spare processors *)

STAKT = (N_TRIADS OF 3, N_SPARES);

FOR J = 1, N_TRIADS;

(* Active processor failure *)
IF NW[J] > 0 TRANTO NW[J] = NW[J]-I BY NW[J]*LAMBDA;

(* Replace failed processor wi_h workinK spare *)
IF (NW[J] < 3) AND (NS > O) TRANTO NW[J] =-NW[J]+I, NS = NS-1

BY FAST DELTA'J;

DEATHIF NWEJ] < 2; (* Two faul_s in a _riad is system failure *)

ENDFOR;

The array state space variable NW contains a value for each triad representing a count of

the number of working processors in that triad. Similarly, the FOR loop (which terminates at

the ENDFOR statement) defines for each triad (t) the active processor failures in that triad_

(2) the replacement of failed processors in that triad with spares from the pool, and (3) the

conditions for that triad that result in system failure.

To accommodate systems with differing reconfiguration rates for different triads, the con-

catenation feature was used in the rate expression of the reconfiguration TRAFr0 statement.

The expression BY FAST DELTA_J within the FOR loop results in a reconfiguration rate of

"FAST DELTAI," for triad 1, "FAST DELTA2," for triad 2, etc. Unfortunately, since the

number of triads is unknown until run time (i.e. H_TRIADS is specified using the INPUT

statement), there is no way to assign values to these identifiers. This must be done by editing

the output file or entering them at SURE run time. For simplicity, the rest of the models in

this section will assume that all triads have the same reconfiguration rates.

10.6 Multiple Degradable Triads with Pooled Cold Spares

In this section, the simple model given above will be modified to allow degradation of triads.

When no more spares are available, each faulty triad is broken up and the non-faulty proces-

sors are added to the spares pool. It is assumed that the system can operate with degraded

performance with the throughpu! of only one processor. In other words, although the initial

configuration consists of mutiple triads, the system can still maintain its vital functions with

only 1 triad remaining.

Since we are going to be breaking up triads, we need a way of deciding if a triad is active.

This will be done by adding an array state-space variable NP to keep track of the number of

64

actzve processors in a triad. This will have the value of three for each triad initially and will

be set to zero for each triad when it is broken up. The array state space variable NFP keeps a

count of the number of failed processors active in each triad. The state space variable NT is

used to keep track of how many triads are still in operation. This variable will always equal

the number of nonzero entries in array NP. Thus, it is in some sense redundant. However,

the specification of the TKANTO is simplified by including it in the SPACE statement.

The specification is:

(* MULTIPLE TRIADS WITH POOL OF WARM SPARES *)

INPUT N_TRIADS;
INPUT N_SPARES;
LAMBDA = IE-4;
DELTA1 = 3.6E3;

DELTA2 = 5.1E3;

(* Number of %riads iniZially *)
(* Number of spares *)
(* Failure ra%e of ac%ive processors *)
(* Reconfiguration ra%e to switch in spare *)
(* Reconfiguration ra%e %o break up a %riad *)

SPACE = (NP: ARRAY[I..N_TRIADS]
NFP : ARRAY [I..N_TRIADS]

NS, (*
NT: O..N_TRIADS) ; (*

0F 0..3, (* Number of processors per %riad *)
Of 0..3, (* Num. failed active procs/%riad *)

Number of spare processors *)
Number of non-failed %riads *)

START = (N_TRIADS OF 3, N_TRIADS OF O, N_SPARES, N_TRIADS);

FOR J = I, N_TRIADS;

IF NP[J] > NFP[J] TRANT0 NFP[J] = NFP[J]+I

BY (NP[J]-NFP[J])*LAMBDA; (* Ac%ive processor failure *)

IF NFP[J] > 0 THEN
IF NS > 0 THEN TRANTO NFP[J] = NFP[J]-I, NS = NS-I

BY FAST NFP[J]*DELTAI;

(* Replace failed processor wi%h working spare *)

ELSE

IF NT > I TRANTO NP[J]=O, NFP[J]=O, NS = NS + (NP[J]-NFP[J]), NT = NT-I
BY FAST DELTA2;

(* Break up a failed triad when no spares available *)
ENDIF;

ENDIF;

DEATHIF 2 * NFP[3] >= NP[J] AND NP[J] > O;
(* Two faul%s in a_n ac%ive _riad is sys%em failure *)

ENDFOR;

As before, all of the TRANT0 and DEATHIF statements are set inside of a FOR loop so that

they are repeated for each triad. The first TKANT0 statement defines failure of an active

processor. When there is an active failed processor in a triad, the second TKANT0 statement

replaces that failed processor with one from the pool of spares. If there are no spares available,

then the faulty triad is broken up and its working processors are put into the spares pool.

fi5

(This assumesthat the systemcan determinewhich processorhas failed with 100lasttriad
in the system(i.e., NT <= 1) then the triad is not broken up. The last triad is allowedto
continueoperation with one faulty processoruntil another of its processorsfa_ls_defeating
the voter. The singleDEATHIFstatementcapturesthe occurrenceof the secondfault in the
last triad aswell asnear-coincidentfaults in the other triads.

The following sequenceof statesrepresentsa typic_ path through the model:

(3,3,3,0,0,0,1,3) -> (3,3,3,0,0,1,1,3) ->
(3,3,3,1,0,0,0,3) -> (0,3,3,0,0,0,2,2) ->
(0,3,3,0,0,0,1,2) -> (0,3,3,1,0,0,1,2) ->
(0,3,3,0,1,0,0,2) -> (0,0,3,0,0,0,2,2) ->

(3,3,3,0,0,0,0,3) ->
(0,3,3,0,1,0,2,2) ->
(0,3,3,0,0,0,0,2) ->

10.7' Multiple Degradable Triads with Pooled Warm Spares

The model given above can be easily modified to include spare failures:

(* MULTIPLE TRIADS WITH POOL OF WARM SPARES *)

INPUT N_TRIADS;
INPUT N_SPARES;
LAMBDA_P = IE-4;
LAMBDA_S = 1E-5;

DELTA1 = 3.6E3;
DELTA2 = 5.1E3;

(* Number of triads ini%ially *)
(* Number of spares *)
(* Failure rate of active processors *)
(* Failure ra%e of warm spare processors *)
(* Reconfiguration ra_e to swi%ch in spare *)
(* Reconfigura%ion ra%e %0 break up a %riad *)

SPACE = (NP: AKRAY[I..N_TRIADS] OF 0..3, (* Number of processors per %riad *)
NFP: ARRAY[1..N_TRIADSJ Of 0..3, (* Num. failed active procs/triad *)
NS, (* Number of spare processors *)
NFS, (* Number of failed spare processors *)
NT: O..N_TRIADS); (* Number of non-failed _riads *)

START = (N_TRIADS OF 3, N_TRIADS OF O, N_SPARES, O, N_TRIADS);

IF NS > NFS TRANTO NFS = NFS+I BY (NS-NFS)*LAMBDA_S; (* Spare failure *)

FOR J = I, N_TRIADS;

IF NP[J] > NFP[J] TRANTO NFP[J] = NFP[J]+I

BY (NP[JJ-NFP[J])*LAMBDA_P; (* At%ire processor failure *)

IF NFP[J] > 0 THEN
IF NS > 0 THEN

IF NS > NFS TRANTO NFP[J] = NFP[JJ-I, NS = NS-I
BY FAST (I- (NFS/NS)),NFF [J] *DELTA1 ;

(* Replace failed processor wi_h working spare *)

IF NFS > 0 TRANTO NS = NS-I, NFS = NFS-I
BY FAST (NFS/NS)*NFP[J]*DELTAI;

(* Replace failed processor wi_h failed spare *)

66

ELSE
IF NT > I TRANTO NP[J]=O, NFP[J]=O, NS = NP[J]-NFP[J], NT = NT-I

BY FAST DELTA2;
(* Break up a failed triad when no spares available *)

ENDIF;
ENDIF;

DEATHIF 2 * NFP[J] >= NP[J] AND NP[J] > O;
(* Two faults in an active triad is system failure *)

ENDFOR;

The additional state space variable, NFS, is needed to keep track of how many failed spares

are in the spares pool. The failure of spares is defined by the first TRANT0 statement. Note

the placement of this statement outside of the FOR loop--if this statement were incorrectly

placed inside of the F0R loop, it would be equivalent to having the spare failure rate multi-

plied by N_TRIADS. This model includes two TRANT0 statements to define replacement of

a failed processor with a spare. The first defines replacement of the failed processor with a

working spare, and it is conditioned on the existence of non-failed spares. The second defines

replacement of a failed processor with a failed spare, conditioned on the existence of failed

spares.

10.8 Multiple Competing Recoveries

In the preceding examples (i.e. multiple triads with pooled spares), we encountered the first

example of a model containing states with multiple recovery processes leaving a single state.

This occurs when multiple faults accumulate in different parts of the system which together

do not cause system failure. The diagram in figure 25 illustrates this concept: Here we have

two triads which are accumulating faults--the first at rate _1 and the second at rate A2. In

state (2,2,7) they both have a faulty processor active at the same time. This is not system

failure since the two failures are in separately voted triads. There are two possible recoveries

from this state--triad 1 recovers first then triad 2, or vice versa. Which case occurs depends

on how long each recovery takes.

In some systems, the recovery process may take longer when there is another recovery

also ongoing in the system. But even when the two recovery processes have no effect on

each other in the system, the presence of competing recoveries still impacts the transition

specification, since the SURE program requiies conditional means and conditional standard

deviations for the competing recovery processes. Consider the simple case where the two

recovery distributions are identical. On average, half of the time triad 1 will recover first, and

half of the time triad 2 will recover first. The conditional mean recovery time is the mean

of the minimum of the two competing recoveries times. The SURE program also requires

the specification of a third parameter--the transition probability. This is the probability

67

3X2 3X2 "__ ...

_ __...

Figure 25: Model With Multiple Competing Recoveries

68

2)_2

NN__FIRS T 1

Figure 26: Triad 1 is Always Repaired First

that this transition will be traversed rather than one of the other fast transitions leaving this

state. The sum of the transition probabilities given for all of the fast transitions leaving a

state must equal one.

In the examples above, the recovery processes were assumed to be exponentially dis-

tributed, and the SURE FAST keyword was used to specify these transitions. As discussed

in section 5.2.7, for this special case the SURE program will automatically calculate the

conditional rates from the unconditional fast exponential rates given.

For systems with nonexponential recovery times or in which recovery times are affected by

the presence of other competing recoveries, the problem of competing recoveries can be dif-

ficult to model accurately. How the system actually behaves in state (2,2,7) of the two-triad

example depends upon the design of the redundancy management system. Many possibilities

exist.. To illustrate, three possible systems are discussed: (1) the system always repairs triad

1 first, (2) the system repairs both triads at the same time, and (3) two independent repair

processes take place.

The model for case (1), triad 1 alway_ repaired first, is shown in figure 26. Although

the two recovery transitions no longer occur simultaneously, the recovery transition rates,

R1..FIRST and R2_SECOND, may or may not have the same distribution as the noncom-

peting rates, R1 and R2. This depends on the system, and may be determined by analysis

or experimentation.

The case (2) mode] of both triads being repaired at the same time is shown in figure 27.

69

2A2

2AI __

°°*

•
Figure 27: Both Triads are Repaired at the Same Time

The mean and standard deviation of the multiple recovery transition must be determined ex-

perimentally. This can be accomplished by injecting two simultaneous faults and measuring

the time to recovery completion.

The third case, two independent repair processes, is shown in figure 28. Even if the two

recoveries are truly independent and not competing for resources, the transition rates will

still be different from the noncompeting rates because they are conditioned on "winning" the

competition. There is no way to analytically determine the conditional means and standard

deviations from the unconditional recovery distributions in general; therefore, these four

distributions must be measured experimentally.

7O

2A2

(

7_ 2A1 __

__ 2_ °°°

Figure 28: Two Independent, Repair Processes

71

11 Transient and Intermittent Faults

Computer systems are susceptable to transient and intermittent faults as well as solid perma-

nent faults. Transient faults are faults which cause erroneous behavior for a short period of

time and then disappear. Intermittent faults are permanent faults which periodically exhibit

erroneous behavior then correct behavior. The problem with transient faults is that they

can confuse a reconfigurable system--if the system improperly diagnoses a transient fault as

a permanent fault, then a good processor is unnecessarily eliminated from the active config-

uration. Since they tend to occur more frequently than permanent faults, this can have a

significant impact on the probability of system failure. The problem with intermittent faults

is that they can deceive the operating system into diagnosing that the fault is transient

rather than permanent. Therefore, a processor experiencing an intermittent fault may be

left in operation much longer than a solid permanent fault or may be repeatedly removed,

restarted, and returned to operation. This makes the system vulnerable to near-coincident

faults for a much longer time than would a solid permanent fault, and also may increasing

the fault management overhead enough to degrade performance. Clearly a properly designed

system must deal effectively with these types of faults. Furthermore, the assessment of such

systems depends upon careful modeling of these faults.

11.1 Transient Fault Behavior

A transient fault may or may not generate errors which are detectable by the operating

system's voters. The following two timing graphs illustrate the two possible effects of a
transient fault:

Case 1: Reconfiguration does not occur

I I I I I I I I

s el e2 e3 e4 e5 e6 ... en

t< Z >1

--> t

Case 2: Reconfiguration occurs

I I I I I I I I I

--> t

72

el e2 e3 e4 e5 e6 ... en

[<- R >I

where

s = time of fault arrival

ei = time of detection of the i th error (1 < i < n)

r = time operating system reconfigures

Z _ c n - 8

R -_- T-.s

These two cases represent the outcome of two competing processes--the disappearance of the

transient fault, and the reconfiguration process of the 5perating systein. In-the first, cffSe, Z is

a random variable which represents the duration of transient errors given that reconfiguration

does not occur, and R is a random variable which represents the reconfiguration time given

that. reconfiguration does occur. Let FR(r) represent the distribution of the reconfiguration

time (given that the system reconfigures).

FR(,') = ProblR < 7"] (1)

Let Fz(z) represent the distribution of the time for the disappearance of the transient fault

given that reconfiguration does not occur.

Fz(z) = Prob[Z < z] (2)

The first distribution FR can be directly observed. The second distribution Fz is more

troublesome to determine. The problem is that a fault produces errors which may persist long

after the fault has actually disappeared. Sometimes the errors disappear quickly, sometimes

they don't. The problem is that the exact time when the last error has disappeared is not

directly observable. However, determination of a worst-case result is often possible. This

maximum time of disappearance can sometimes be derived from the operating system code.

This follows from the fact that the operating system is responsible for the recovery from the

transient fault. If the operating system does not perform some type of "state-restoration"

process periodically, a transient fault is as damaging as a permanent fault. For example,

an alpha particle may flip a bit in memory. If this memory is not re-written, the error

will persist indefinitely. Therefore it is essential that the fault-tolerant operating system

periodically rewrite volatile memory with "voted" versions of the state.

11.2 Modeling Transient Faults

In this section we will investigate the problem of modeling a triplex system that is subject

to transient faults. First, a failure rate 7 must be determined for the transient class of

73

Figure 29: Degradable Triad Subject to Transient Faults

faults (i.e. the rate of transient fault arrivals) . Often the transient fault rate 7 is assumed

to be 10 times [1] the permanent fault rate)_. We will assume that this system has been

designed such that it can recover from transient faults. (Otherwise, transient faults are as

deadly as permanent faults and should be modeled as such.) This recovery is accomplished

by periodically voting all of the volatile internal state of the processor. Each (non-faulty)
processor rewrites each data value of its internal state with a voted value. Let ISVP = the

period with which the operating system replaces the entire volatile state with voted values.

We also will assume that the active duration of a transient fault is small in comparison

to ISVP. Assuming that the time from the fault arrival to the operating system update is

uniformally distributed, the mean is ISVP/2 and the standard deviation is ISVP/2x/_. Of

course, the actual mean and standard deviation should be experimentally measured. The

values of these parameters would depend strongly upon the strategy of transient recovery

used by the operating system.

During the period of time from the arrival of a transient fault until the system can recover,

the system is vulnerable to near-coincident failures. If a second processor experiences a

transient or permanent fault while transient errors are present, then the 3-way voter can no

longer mask the faults. Such a state is a system failure state. In figure 29, a model of a

degradable triad system subject to only transient faults is given. The corresponding SURE
model is:

GAMMA = 1E-4;
MU1 = 2.7E-4;
SIGMA1 = 1.3E-4;
ISVP = IE-3;
PROB_RECONF = .1;

(* Arrival ra_e for _ransien_ faul_s *)
(* Mean reconfigura_ion time *)
(* $_andard deviation of reconfigura_ion _ime *)
(* Mean In_ernal Sta_e Vo_ing Period *)
(* Probability of reconfiguring ou_ _ransien_ faul_ *)

1,2 = 3*GAMMA;

74

10-5

, ...'_

.. -.""

V"

/

10-7 .. I I I I I I f
10-7 lO-S 10 -s 10 -4 10-3 10-2 10-1 10 0 101

ISVP

Figure 30: Failure Probability as a Function of IVSP

2,3 = 2*GAMMA;

2,4 = <MUI,SIGMAI,PKOB_KECONF>;
2,1 = <ISVP/2,ISVP/(2*SQRT(3)),I-PKOB_RECONF>;

4,5 = GAMMA;

In this model there are two recovery transitions from state 2. Therefore, it is necessary

that SURE's three-parameter form of recovery be used. The first two parameters are the

conditional mean and standard deviation. The third parameter is the probability that the

recovery transition succeeds over all of the other competing recovery transitions. An exper-

imental procedure for measuring these parameters is decribed in [17]. The probability of

failure of the system as a function of the voting period, ,_[VSP, is shown in figure 30

11.3 Model of Quad Subjefft to Transient and Permanent Faults

Since transient faults tend to occur at a faster rate than permanent faults, many systems

are designed to tolerate transients that disappear after a short amount of time. Because

fewer processors are needlessly reconfigured out, this can significantly reduce the number

of spare components needed. However, the operating system must be able to distinguish

75

between transient faults and permanent faults. Typically, a simple algorithm is used by the

operating system to distinguish the two types of faults. Since this algorithm is not fool-

proof, it is necessary to include a transition in the model representing the operating system

incorrectly reconfiguring in the presence of a transient fault.

In the SIFT system significant consideration was given to this problem. The operating

system is faced with conflicting goals. If the fault is permanent, the system needs to recon-

figure as quickly as possible. If the fault is transient, then the system should not reconfigure.

Typically, the operating system delays the reconfiguration process temporarily to see if the

fault will disappear. Clearly, the amount of time the operating system delays has a sig-

nificant impact on system reliability because of the susceptibility to near-coincident faults.

Only a minimal amount of information resides in the dynamic (volatile) portions of system

memory. The schedule table in SIFT is static, so it could be stored in non-volatile read-only

memory (ROM). This is also lrue of the program code.

The ASSIST input file for a SIFT-like system starting with four processors is:

NP = 4;

LAMBDA = IE-4;

GAMMA = IO*LAMBDA;

MU = IE-4;

STD = 2E-4;

MU_REC = 7.4E-5;
STD_REC = 8.5E-5;

P_REC = .I0;
"ISVP = IE-2;"

(* Number of processors *)
(* Permanent fault arrival ra_e *)

(* Transien% faul_ arrival ra_e *)

(* Mean permanen% fault reconfigura_ion time *)

(* S%andard dev. of permanenz fault reconfig. *)

(* Cond. mean reconfiguration %ime for zransien_ faul% *)

(* Cond. s%andard devia%ion of %ransient reconfigura_ion *)

(* Probabili%y sys%em reconfigures out a transien% *)
(* Period of sys%em rewri%e of internal sta%e *)

"MU_DISAPPEAR = ISVP/2;" (* Cond. mean _ime %o %ransien_ disappearance *)

"STD_DISAPPEAR = ISVP/(2*SQRT(3));" (* Cond. s_an. dev. of disappearance %ime *)

SPACE = (NW: O..NP,

NFP: O..NP,

NFT: O..NP);

START = (NP, O, 0);

(* Number of working processors *)

(* Ac%ive procs, wi%h permanent faul%s *)

(* Ac%ive procs, wi%h %ransient faul_s *)

DEATHIF NFP+NFT >= NW; (* Majori%y of active processors failed *)

IF NW>O THEN

TRANTO (NW-I, NFP+I, NFT) BY NW*LAMBDA;

TRANTO (NW-1, NFP, NFT+I) BY NW*GAMMA;
ENDIF;

(* Permanen% faul% arrival *)

(* Transien% fault arrival *)

IF NFT > 0 THEN

TRANTO (NW+I, NFP, NFT-I) BY <MU_DISAPPEAR,STD_DISAPPEAR,I-P_REC>

(* Transien_ faul_ disappearance *)
TKANTO NFT = NFT-1 BY <MU_REC, STD_REC,P_REC>;

(* Transien% fault reconfigura%ion *)
ENDIF;

IF NFP > 0 TRANTO NFP = NFP-I BY <MU,STD>;

(* Permanen% fault reconfigura%ion *)

76

11.4 Degradable NMR with Transients

In this section, some problems associated with modelling degradable NMR systems subject

to permanent and transient faults is explored. The major problem is that many different

situations arise where there are competing recoveries. Each of these situations involves

different, parameters which must be experimentally measured. To illustrate the problem, we

will first consider a degradable 6-plex. If we modify the model of the previous section by

changing the first, line to:

NP = 6;

the SURE program will object with the following message:

*** ERROR: SUM OF EXITING PROBABILITIES IS NOT I AT 12

When we examine the generated model, we find that at state 12, we have five transitions:

48: 12(* 3,1,1 *),
49: 12(* 3,1,1 *),
50: 12(* 3,1,1 *),
51: 12(* 3,1,1 *),
52: 12(* 3,1,1 *),

1(* 2,2,1 *) = 3*LAMBDA;
1(* 2,1,2 *) = 3*GAMMA;
9(* 4,1,0 *) = <WO_DISAPPEAR,STD_DISAPPEAR,I-P_REC>;

1S(* 3,1,0 *) = <MU_REC,STD_REC,P_REC>;
16(* 3,0,1 *) = <HU,STD>;

Three of the five transitions are competing recoveries. The reason for this is that there

are two active faults at state 12--one transient and one permanent. The three possible

outcomes are (1) the permanent fault, is reconfigured, (2) the transient fault is reconfigured

and (3) the transient fault disappears. The ASSIST model was originally constructed for

a quad system where any state with two active faults would be a death state. However,

with higher levels of redundancy comes more complexity. There are several ways around this

problem. Unfortunately, the more satisfactory models are more complex. We will begin will

the simplest.

The easiest way around the problem, is to make all such states death states. This is the

approach used by programs based on the "critical-pair" approach such as CARE and HARP

[9, 10]. This can be done with ASSIST by changing the DEATHIF statement to

DEATHIF NFT + NFP >= 2;

Although this results in a conservative answer, it is not a satisfactory solution since the

model simply ignores all of the additional redundancy. Overly conservative results can be

obtained using this technique.

A second way around the problem is to model all of the recovery transitions with expo-

nential distributions. The SURE program automatically determines all of the conditional

parameters when this is done. The model would be:

77

NP = 6;
LAMBDA = IE-4;

GAMMA = IO*LAMBDA;
W = .5;
DELTA = 3.6E3;

SPACE = (NW: O..NP,

NFP: O..NP,
NFT: O..NP);

START = (NP, O, 0);

DEATHIF NFP+NFT >= NW;

IF NW>0 THEN
TRANT0 (NW-I,
TRANT0 (NW-I,

ENDIF;

(* Number of processors *)
(* Pez_nanent fault arrival rate *)
(* Transien$ faul_ arrival rate *)

(* Transient fault disappearance rate *)
(* Reconfiguration rate *)

(* Number of working processors *)
(* Active procs, with permanent faults *)
(* Active procs, wi_h transient faults *)

(* Majority of active processors failed *)

NFP÷I, NFT) BY NW*LAMBDA; (* Permanen$ fault arrival *)
NFP, NFT+I) BY NW*GAMMA; (* Transient fault arrival *)

IF NFT > 0 THEN
TKANTO (NW+I, NFP, NFT-I) BY FAST W;

TRANTO NFT = NFT-I BY FAST DELTA;
ENDIF;

(* Transient fault disappearance *)
(* Transient fault reconfiguration *)

IF NFP > 0 TRANTO NFP = NFP-I BY FAST DELTA; (* Permanent f. reconfiguration *)

This model will work for arbitrary values of "NP". Unfortunately, this model makes the

assumption that all of the recovery distributions are exponentially distributed.

The most accurate way to model such systems is to use general recovery distributions.

This necessitates analysis of each of the situations where multiple competing recoveries occur.

For a 5-plex or a 6-plex, there are operational states with two active faults. The following

cases exist: (1) two permanents, (2) two transients and (3) a transient and a permanent.

The conditional moments for each of these cases musi be measured experimentally. These

parameters are:

Case 1: two permanents

• .Y[U2 = conditional mean recovery time of the first of two competing recoveries

• STD_2 = conditional standard deviation of the recovery time of the first of two competing
recoveries

Case 2: two transients

• MU_DISAPPEAR_2 = conditional meaa_ time of disappearance of one of the two transients

• STD_DISAPPEAR_2 = conditional standard deviation of the time of disappearance of one
of the two transients

• P_DISAPPEAR_2 = probability one of the transients disappears before the system recomfig-
ures one of the transients.

78

• MU..REC-2 = conditional mean time to reconfigure one of the transients before either dis-

appears

• STD_REC_2 = conditional standard deviation of time to reconfigure one of the transients

before either disappears.

Case 3: a transient and a permanent

P_DIS-BEF2 = probability the transient disappears before the system reconYigures either

fault.

• P_REC_TRAN = probability the system reconfigures the transient before it disappears or

the permanent is reconfigured.

• P_REC_PERM = probability the system reconfigures the permanent before the transient

disappears or is reconfigured.

• MU_DIS_3 = conditional mean time of disappearance of the transient given that it wins the

3-way race.

• STD-DIS-3 = conditional standard deviation of the time of disappearance of the transient

given that it wins the 3-way race.

• MU..REC_3 = conditional mean time to reconfigure the transient given that it wins the 3-way

race.

• STD-REC_3 = conditional standard deviation of time to reconfigure the transient given that

it wins the 3-way race.

• MU_3 = conditional mean time to reconfigure the permanent given that it wins the 3-way

race.

• STD_ = conditional standard deviation of time to reconfigure the permanent given that it

wins the 3-way race.

The complete model is:

NP = 6;
LAMBDA = IE-4;
GAMMA = IO*LAMBDA;

(, Cons'cants

MU = 1E-4;
STD = 2E-4;

(, Constants

MU_REC = 7.4E-5;
STD_REC = 8.5E-5;

(* Number of processors *)
(* Permanent fault arrival rate *)
(* Transient fault arrival rate *)

associated w_h one permanent *)

(* Mean permanent fault recovery time *)
(* S_andard deviation permanent fault *)

associated wi_h one transien_ *)

(* Mean reconfiguration time from transient *)
(* S_andard deviation of _ransien_ reconfiguration *)

79

P_REC = .10; (* Probability system reconfigures transient *)
"ISVP = 1E-2;" (* Period of system rewrite of internal state *)

"MU_DISAPPEAH = ISVP/2;" (_ Mean time to transient disappearance *)

"STD.DISAPPEAK = ISVP/(2*SQRT(3));" (* S_an. dew. of disappearance time _)

(* Constants associated with two transients *)

MU_REC_2 = 7.4E-5; (* Mean reconfiguration time from _ransient *)

STD_REC_2 = 8.5E-5; (* S_andard deviation of transient reconfi_ration *)

P_DISAPPEAH_2 = .92; (* Probability system reconfigures transien_ *)

"MU_DISAPPEAH_2 = 5E-3;" (* Mean time to transient disappearance *)

"STD_DISAPPEAR_2 = 3E-3;" (* Stan. dew. of disappearance time *)

(* Cons%ants associated wi%h two permanents *)

MU_2 = 1E-4;

STD_2 = 2E-4;

(, Mean permanent fault recovery time *)

(* S_andard deviation permanent fault *)

(* --- constants associated with states with a permanent and a transient --- *)

"P_DIS_BEF2 = .3;" (* Probability the transient disappears ,)

"P_REC_TKAN = .3;" (* Probability the _ransient is reconfigured *)

"P_REC_PEB/_ I-(P_DIS_BEF2+P_KEC__AN): °' (* Prob. permanent is reconfigured *)

"MU_DIS_3 = IE-4;" (* Conditional mean time of disappearance of

transient given that it wins the 3-way race. *)

"STD_DIS_3 = IE-4;" (* Conditional szandard time of disappearance of

the _ransient given that it wins _he 3-way race. *)

"MU_EEC_3 = IE-4;" (* Conditional mean time _o reconfig_Lre the

transient given that it wins the 3-way race. *)

"STD_REC_3 = IE-4;" (* Conditional s_andard deviation of time to

reconfigure the transient given that it wins *)

"MU_3 = IE-4;"

"STD_3 = 1E-4;"

(* Conditional mean time to reconfigure _he

permanent given that i_ wins. *)
(* Conditional standard deviation of time

to reconfigure the permanent given that it wins *)

SPACE = (NW: O..NP,

NFP: O..NP,
NFT: O..NP);

START = (NP, O, 0);

(* Number of working processors *)

(* Active procs, with permanent faults *)

(* Active procs, with transienz faults *)

DEATHIF NFP+NFT >= NW; (* Majority of active processors failed *)

IF NW>O THEN
THANTO (NW-I, NFP+I, NFT) BY NW*LAMBDA; (* Permanent faul_ arrival *)

TKANTO (NW-I, NFP, NFT+I) BY NW*GAMMA; (* Transient fault arrival *)

ENDIF;

IF NFT * NFP = I THEN (* i active faul_ *)

IF NFT > 0 THEN

TKANTO (NW+I, NFP, NFT-1) BY <MU_DISAPPEAK,STD_DISAPPEAR,I-P_KEC> ;

(* Transient fault disappearance *)

TRANTD NFT = NFT-1 BY <MU_REC, STD_REC,P_REC>;

(* Transient fault reconfiguration *)

ENDIF;

8O

IF NFP > 0 TRANTO NFP = NFP-1 BY <MU,STD>; (* Perm. f. reconfigura_ion *)
ENDIF;

IF NFP = 2 (* Case 1: Two permanents *)
TRANTO NFP = NFP-1 BY <MU_2,STD_2>; (* Perm__nen_ faul_ reconfigura_ion *)

IF NET = 2 THEN (* Case 2: Two _ransients *)
TRANTO (NW+I, NFP, NFT-I)

BY <MU_DISAPPEAR_2,STD_DISAPPEAR_2,P_DISAPPEAR_2> ;

(* Transien$ faul_ disappearance *)
TRANTO NFT = NFT-I BY <MU_REC_2, STD_REC.2,I-P_DISAPPEAR_2>;

(* Transient faulZ reconfigura_ion *)
ENDIF;

IF (NFT = 1) AND (NFP = I) THEN (* I transien_ and I permanen_ *)

TRANTO (NW+I, NFP, NFT-I) (* Transien% faulZ disappearance *)
BY <MU_DIS_3,STD_DIS_3,P_DIS_BEF2> ;

TRANTO NFT = NFT-I (* Transien% faul% reconfigura_ion *)
BY <MU_REC_3, STD_REC_3,P_REC_TRAN>;

TRANTO NFP = NFP-I (* Permanen% faul% reconfigura%ion *)
BY <MU_3,STD_3,P_REC_PERM>;

ENDIF;

Obviously one would want to perform a rough sensitivity analysis to determine how sen-

sitive a system is to transient faults before developing such a complex model and measuring

so many parameters.

11.5 FTP

The strategy used in the Charles Stark Draper Laboratory's Fault-Tolerant Processor (FTP)

for dealing with transient faults is different than that used in earlier fault-tolerant systems

such as SIFT [19]. In the earlier systems, reconfiguration was deferred until the system was

reasonably certain that the fault was permanent. Once a processor was removed, it was never

reinstated. In FTP a different strategy is used. Upon the first detection of an error, the

faulty processor is removed. The system then executes a self-test on the removed processor.

If the processor passes the test, the system diagnoses the problem as a transient fault and

reinstates the processor. If the processor fails the self-test program, the fault is diagnosed

as permanent and the processor is permanently removed. Thus, a transient fault that does

not disappear in time will be diagnosed as permanent.

A partial model for the FTP is shown in figure 31. In this model each state is described

by a triple:

(NW,NFA,NFT)

where

81

4_
(4,o,o) (3,1,o

(3,0,1

1
(3,0,0)

3_
- (32,0)

3A
(3,1.1)

F_ Fpa'" F j ¢,ii

"Jail 3"__

" (3,1,0) "

2A
(3,2,1)

Figure 31: Partial Model of FTP

NW

NFA

NFT

= number of working processors

= number of faulty processors (both transient and permanent)

= number of processors undergoing self test

The transition from (4,0,0) to (3,1,0) represents the failure of any processor in the con-

figuration. The transition from (3,1,0) to (3,0,1) represents the detection of a fault, the

temporary removal of the processor from the active configuration, and the initiation of the

self-test program. If the processor passes the self-test, the processor is returned to the active

configuration, as represented by the transition from (3,0,1) back to (4,0,0). If the processor

fails the self-test, the processor is permanently removed from the configuration. This occurs

in the model in the transition (3,0,1) to (3,0,0). Note that while the self-test program is in

progress (i.e. in state (3,0,1)), that a second failure does no_ lead to system failure. This is

true because the outputs from the removed processor are not considered in the voting, thus

the majority of the outputs being voted _re nonfaulty. Thus, state (3,1,1) is not a death

state. The complete SURE model is:

F_P = IE-6 TO* 1 BY I0;
F_T = I.O-F_P;
LAMBDA = 1E-4;
DET = IE-7;
SIGDET = IO*DET;

82

TESTTIME = IE-3;
SIGTEST = 2*TESTTIME;

2(* 4 0 0 *)
3(* 3 1 0 *)
3(* 3 1 0 *)
4(* 3 0 1 *)
4(* 3 0 1 *)
4(* 3 0 1 *)
5(* 2 1 1 *),
5(* 2 I I *),
S(* 2 1 i *),
6(* 3 0 0 *),
7(* 2 i 0 *),
7(* 2 1 0 *),
8(* 2 0 1 *),
8(* 2,0 I *),
8(* 2,0 1 *),
9(* 2,0 0 *),

3(* 3,1,0 *) = 4*LAMBDA;
i(* 2,2,0 *) = 3*LAMBDA;

4(* 3,0,1 *) = <DET,SIGDET>;
5(* 2,1,1 *) = 3*LAMBDA;
2(* 4,0,0 *) = <TESTTIME,SIGTEST,F_T>;
6(* 3,0,0 *) = <TESTTIME,SIGTEST,1-F_T>;
1(* 1,2,1 *) = 2*LAMBDA;

3(* 3,1,0 *) = <TESTTIME,SIGTEST,F_T>;
7(* 2,1,0 *) = <TESTTIME,SIGTEST,I-F_T>;
7(* 2,1,0 *) = 3*LAMBDA;
i(* 1,2,0 *) = 2*LAMBDA;
8(* 2,0,1 *) = <DET,SIGDET>;
I(* i,I,I *) = 2*LAMBDA;
6(* 3,0,0 *) = <TESTTIME,SIGTEST,F_T>;
9(* 2,0,0 *) = <TESTTIME,SIGTEST,1-F_T>;
I(* i,i,0 *) = 2*LAMBDA;

This model was generated with the ASSIST input given below:

SPACE = (NW: 0..4,

NFA: 0..4,
NFT: 0..4);

(* number of working processors *)
(* number of faulty active processors *)
(* number of processors undergoing self tes_ *)

START = (4,0,0);

LAMBDA = IE-4; (* Arrival rate of failures -- perm. or transient *)
DET = 1E-7; (* Mean time ro detect and remove proc. with fault *)
SIGDET = IO*DET; (* S_an. dev. _ime _o de_ec_ and remove processor *)
TESt"rIME = 1E-3; (* Mean time _o execute self _est *)
SIGTEST = 2*TESTTIME; (* S_an. dev. of rime to execute self test *)

"F_P = IE-6 TO* I BY i0;" (* Probability failure was pezlnanen_ *)
"F_T = I.O-F_P;" (* Probability failure was transient *)

(* Faul_ arrival *)
IF NW > 0 TRANTO NW=NW-I, NFA = NFA + 1 BY NW*LAMBDA;

(* Detection of fault and removal of processor for self test *)
IF (NFA > O) AND (NFT = O) TRANTO NFT=NFT+I, NFA = NFA - I BY <DET,SIGDET>;

IF NFT > 0 THEN

(* Reinsta_emen_ of processor after transient fault *)
TRANT0 NFT=NFT-1, NW = NW+I BY <TESTTIME,SIGTEST,F_T>;

(* Pex_nanent removal of processor with pex_naunent fault *)
TRANTO NFT=NFT-1 BY <TESTTIME,SIGTE2T,I-F_T>;

ENDIF;

(* System failure occurs if majority of outputs sent to voter are faul_y *)
DEATHIF NFA >= NW;

83

(3,0,0)

3_ 2_

C°1i i°2ib a b

2_

(2,1,0) • (1,1,1)

(1,o,o)

a

Figure 32: Detailed Intermittent Fault Submodel

In this model it is assumed that the FTP does not allow a second processor to undergo self

test, while another processor is undergoing self-test. Note that the "IF-expression" which

governs the generation of transitions which remove a processor from the active configuration

for self-test, is IF (NFA > 0) AND (NFT = 0). The second term prevents the generation of

a "self-test" transition, when a processor is already under self-test.

Most models containing transient faults, require the estimation of the disappearance rates

for transient faults. There is virtually no data available on what are reasonable values for

this parameter because this data cannot be measured on operational equipment or through

fault injection experiments.

This parameter was not used explicitly in the above model of the FTP system. The

disappearance rate of short transients does not matter because the FTP operating system

masks all outputs after the first erroneous output until the self test is complete. However,

if a transient persists long enough for a processor to fail the self test, then the fault is

assumed to be permanent and the processor is permanently removed. Thus, the true transient

disappearance rate affects what the ratio of transient to permanent faults will be. And that

ratio, which is unknown, can play an important part in assessing whether the FTP strategy

of reinstating processors is a good strategy.

11.6 Modeling Intermittent Faults

A remnant of the multi-step fault error-handling model methodology (see section 4.5) is the

notion that separate states must be used to represent the active and inactive states of an

intermittent fault. Models are constructed that resemble the partial model in figure 32.

84

In this partial modelof a triplex-simplex systemsubject to intermittent faults, the states

are described with a triple:

(NW,NFA,NFB)

where

NW = number of working processors

NFA = number of processors with active faults

NFB = number of processors with benign faults

When a processor fails, the fault is initially benign. At some rate a the fault becomes active.

At some rate b the active intermittent fault, returns to the benign state. While the fault

is benign, no errors are produced which would enable the system to detect the fault. The

question that the modeler must address, is whether "benign" faults cause near-coincident

failure. One conservative approach is to assume that they do. In this case, intermittent

faults behave identically to permanent faults except that they are reconfigured at a different

rate than permanents. If faults in the benign state are assumed to not cause near-coincident

failure, then there are many "additional" states in the model which contain benign faults.

For example, states (1,0,2), (1,0,3), (2,0,2) contain more faulty benign processors than good

processors, yet these states are operational. The following ASSIST input could be used to

generate the complete model for a triplex system:

SPACE = (NW: 0..3, (* Number of working processors *)

NFA: 0..3, (* Number of processors with active inS. faults *)

NFB: 0..3); (* Number of processors with benign in%. faults *)

START = (3,0,0);

L = 1E-4;

REC = 1E4;

A = 1E2;

B = IE2;

(* Rate of arrival of inteI_nittent faults *)

(* Mean rate of reconfiguration *)

(* Rate benign intez_nittent fault goes active *)

(* Rate active interTnittent fault goes benign *)

(* Arrival of interraiZ_ent fault -- assumed to start out benign *)
IF NW > 0 TRANTO NW = NW-I, NFB = NFB + 1 BY NW*L;

(* Benign intermittent fault becomes active *)

IF NFB > 0 TRANTO NFB = NFB - 1, NFA = NFA + 1 BY FAST A;

IF NFA > 0 THEN

(* Active intermittent fault becomes benign *)
TRANTO NFB = NFB + 1, NFA = NFA - 1 BY FAST B;

(* Processor wi_h active intezlni_tent fault reconfigured -- 2 cases: *)

(* Reconfigttre to simplex working processor *)
IF NW > 0 TRANTO (1,0,0) BY FAST [NW/(NW+NFB)]*REC;

(* Reconfigure to simplex with benign intermittent fault *)

IF NFB > 0 TBANTO (0,0,1) BY FAST [NFB/(NW+NFB)]*REC;

ENDIF;

(* System failure occurs when majority of processors have active fault *)
DEATHIF NFA >= (NW+NFB);

85

(

F*(t)

Figure 33: Model of Triplex to Simplex System Subject to Intermittent

The recovery rule generates two competing recoveries. This is necessary because the

operating system makes an arbitrary choice among the processors which do not contain

active faults when it degrades to a simplex. The probability that a processor with a benign

fault becomes the remaining simplex processor is: NFB/(NW+NFB).

The problem with this model is that the on-off cycles of the intermittent must be modeled

and the associated parameters must be measured. Realistic intermittent faults are difficult

to create in the laboratory, and the rates at which they become active and benign are difficult

to measure. Even if we could accurately measure these parameters, a semi-Markov model

may not have enough generality to accurately represent the behavior of the active-benign

oscillations. We believe it is preferable to inject intermittent faults and observe the impact

on the system. The system recovery time will probably be longer for intermittents than for

transients. The resulting model is shown in figure 33. Even though this model is considerably

simpler, it can be much more accurate than the detailed model given above in some cases

because it relies only on directly observable parameters. Note that this method uses the

conservative approach of assuming that benign faults can cause near-coincident failure.

The SURE program has difficulty solving models with "fast loops", i.e, loops containing

no slow transitions. The SURE program can solve the model generated by the ASSIST input

above. The output is

air51_ sure

SURE V7.4 NASA Langley Research CenCer

17 readO inCm

0.20 SECS. TO READ MODEL FILE

86

35? run

MDDEL FILE = in%m.mod SURE V7.4 24 Jan 90 14:17:49

LOWERBOUND UPPERBOUND COMMENTS RUN #1
..

1.38175e-06 1.50309e-06 <prune 8.9e-13>

64 PATH(S) TO DEATH STATES 54 PATH(S) PRUNED
HIGHEST PRUNE LEVEL = 6.18304e-13
1.650 SECS. CPU TIME UTILIZED

36? exi_

However, for some parameter regions the program may require large amounts of CPU time.

For example, if the value of B is changed to 1ES, the SURE program will require 3458 secs.

to solve the model. In fact as B --_ oo, the execution time --* o¢_ If the SURE program is

unable to solve the model in a reasonable amount of time, the PAWS or STEM programs

may be used to solve the model. However, these programs assume that all recoveries are

exponentially distributed.

87

Sensor

SenSOrs2

Sensor

$3

Bus SP

Processor P1

- Processor P2 _--

Processor P3

Processor P4
m

Bus PA

Force-Sum

Actuator

Figure 34: System with 5 Subsystems

12 Modeling Control System Architectures

All of the models in the previous sections contained only processors in various configurations.

In this section we will discuss how to include the fault behavior of all of the components in

a typical flight control system architecture in the reliability model. Although some of the

previous models were somewhat complex, they typically dealt with only a few components.

As more components are added to the models, the possible combinations and sequences

of component failures, and thus the size of the reliability model, increases exponentially.

Therefore, model pruning techniques needed to reduce the size of these models are introduced

in this section.

The system shown in figure 34 consists of five subsystems: (1) the triplicated sensors, (2)

the triplicated sensor-to-processor bus SP_BUS, (3) the degradable quad of processors, (4)

the triplicated processor-to-actuator bus PA_BUB, and (5) the forced-sum voting actuator.

As long as there are no failure dependencies, the separate subsystems can be represented

by separate reliability models. Each of "these are solved in isolation. Finally, the results

are added together probabilistically, i.e. the probability of the union. The SURE command

ORPROB performs the probabilistic add automatically. The SURE input file is:

LAMBDA_SENSORS = 3.8E-6;
1,2 = 3*LAMBDA_SENSOR$;
2,3 = 2*LAMBDA_SENSORS;
RUN;

88

LAMBDA_SP_BUS = 3.8E-6;

1,2 = 3,LAMBDA_SP_BUS;
2.3 = 2,LAMBDA_SP_BUS;
RUN;

LAMBDA_PA_BUS = 3.8E-6;
1.2 = 3,LAMBDA_PA_BUS;
2,3 = 2,LAMBDA_PA_BUS;

RUN;

LAMBDA_ACT = 1E-8;

1,2 = LAMBDA_ACT;
RUN;

LAMBDA = IE-4;
MEANREC = 1E-5;
STDKEC = 1E-5;

(, Failure rate of processor *)
(* Mean reconfigura_ion _ime *)
(* S_andard deviation of *)

1,2 = 4*LAMBDA;
2,3 = 3*LAMBDA;
2,4 = <MEANREC,STDREC>;

4,5 = 3*LAMBDA;
5,6 = 2*LAMBDA;
5,7 = <MEANREC,STDREC>;
7,8 = LAMBDA;
RUN;

ORPROB;

The interactive session follows:

$ sure

SURE V7.4 NASA Langley Research Center

17 read sa

2: LAMBDA_SENSORS = 3.8E-6;
3:1,2 = 3,LAMBDA_SENSORS;
4:2,3 = 2,LAMBDA_SENSORS;
5: RUN;

MODEL FILE = sa.mod SURE V7.4 24 Jan 90 10:28:46

LOWERBOUND

4.33173e-09

UPPERBOUND

4.33200e-09

I PATH(S) TO DEATH STATES
0.034 SECS. CPU TIME UTILIZED
6:
7: LAMBDA_SP_BUS = 3.8E-6;

8:1,2 = 3*LAMBDA_SP_BUS;
9:2,3 = 2*LAMBDA_SP_BUS;

COMMENTS RUN #1

89

10: RUN;

MODEL FILE = sa.mod SURE V7.4 24 Jan 90 10:28:46

LOWEHBOUND

4.33173e-09

UPPEKBOUND

4.33200e-09

I PATH(S) TO DEATH STATES
0.034 SECS. CPU TIME UTILIZED
11:
12: LAMBDA_PA_BUS = 3.8E-6;

13:1,2 = 3*LAMBDA_PA_BUS;
14:2,3 = 2*LAMBDA_PA_BUS;
15: RUN;

MODEL FILE = sa.mod

COMMENTS RUN #2
.................................

SURE V7.4 24 Jan 90 i0:28:47

LOWERBOUND

4.33173e-09

UPPERBOUND

4.33200e-09

I PATH(S) TO DEATH STATES
0.050 SECS. CPU TIME UTILIZED
16:
17: LAMBDA_ACT = 1E-8;
18:1,2 = LAMBDA_ACT;
19: RUN;

MODEL FILE = sa.mod

COMMENTS RUN #3
--_.

SURE V7.4 24 Jan 90 10:28:47

LOWERBOUND

l.O0000e-07

UPPERBOUND

1.00000e-07

I PATH(S) TO DEATH STATES
0.050 SECS. CPU TIME UTILIZED

20:
21: LAMBDA = IE-4;
22: MEANREC = 1E-5;
23: STDREC = 1E-5;
24:

25:1,2 = 4*LAMBDA;
26:2,3 = 3.LAMBDA;
27:2,4 = <MEANKEC,STDREC>;

28:4,5 = 3*LAMBDA;
29:5,6 = 2*LAMBDA;
30:5,7 = <MEANREC,STDREC>;
31:7,8 = LAMBDA;
32: RUN;

COMMENTS RUN #4

(* Failure rate of processor *)
(, Mean reconfigura_ion Zime *)
(* S_andard deviazion of *)

90

MODEL FILE = sa.mod SURE V7.4 24 Jan 90 10:28:47

LDWERBOUND

2.00574e-09

3 PATH(S) TO DEATH STATES
0.134 SECS. CPU TIME UTILIZED
33:

34: ORPROB;

MODEL FILE = sa.mod

UPPERBOUND

2.01201e-09

RUN # LOWERBOUND UPPERBOUND
................................

1 4.33173e-09 4.33200e-09
2 4.33173e-09 4.33200e-09
3 4.33173e-09 4.33200e-09
4 1.00000e-07 1.00000e-07
5 2.00574e-09 2.01201e-09

.....................

OR PROB = 1.15001e-07 1.15008e-07

COMMENTS RUN #S

SURE V7.4 24 Jan 90 10:28:48

0.70 SECS. TO READ MODEL FILE

357 exit

The sensor subsystem for this example was very simple to model. The following section

shows a more complex sensor subsystem.

12.1 Monitored Sensors

In this example, a set of monitored sensors is modeled. Initially, the system consists of five

sensors, and each sensor has a monitor to detect failure of that sensor. Sensors fail at rate

As, and monitors fail at rate AM. If a sensor fails and the monitor is working, the monitor

will detect with 90% probability that the sensor failed and will remove that sensor from the

active configuration. If the monitor has failed or does not detect that the sensor has failed,

then the faulty sensor remains in the active configuration, contributing its faulty answers to

the voting. There is no other means of reconfiguration.

Since values from all of the sensors in the active configuration are voted, system failure

occurs when one-half or more of the active sensors are faulty.

The ASSIST input file to describe this system is as follows:

LAMBDA_S = 1E-4;

LAMBDA_M = 1E-5;
COV = .90;

(* Failure rate of sensor *)
(* Failure rate of monitor *)
(* Detection coverage of monitor *)

91

SPACE = (NW: 0..5,

NW_MDN: 0..5,
NF: O..5) ;

(* Number of working sensors *)

(* Number of working sensors wi_h monitors *)
(* Number of failed active sensors *)

START = (5,5,0); (* S_ar_ wi_h 5 working sensors with monitors *)

(* Failure of monitored sensor *)
IF (NW_MON > O) THEN

TRANTO NW=NW-I,NW_MON=NW_MON-I BY COV*LAMBDA_S;
TRANTO NW=NW-I,NW_MON=NW_MON-I,NF=NF*I BY (I-COV)*LAMBDA_S;

ENDIF;

(* Failure of unmonitored sensor *)
IF (NW > NW_MON) TRANTO NW = NW-I, NF=NF+I BY (NW-NW_MON)*LAMBDA_S;

(* Failure of monitor *)
IF NW_MON > 0 TRANTO NW_MON = NW_MON-I BY LAMBDA_M;

DEATHIF 2*NF >= NW;

The state space consists of three variables: NW, NW_MON, and NF. The state space

variable NW represents the number of working sensors in the active configuration and is

decremented whenever a monitor detects that its sensor has failed. The variable NW_MON

represents how many of the NW sensors have functioning monitors. This is decremented

whenever a monitor fails or a monitored sensor fails. The variable NF represents the number

of failed sensors in the active configuration and is incremented ,_henever a sensor fails and

its monitor is either faulty or fails to detect that the sensor has failed.

In the above examples, subsystems could be modeled separately because the functioning

and failures in each subsystem were not dependent on the current state of the other subsys-

tems. Unfortunately, this is rarely the case. In the following sections, modehng of systems

with various failure dependencies between subsystems will be discussed.

12.2 Failure Dependency

The following architecture description for the ARCS flight control system was taken from [18].

The system consists of 3 sensors (sl, s2, s3), 3 hydraulics units (hl, h2, h3), 3 computers (el,

c2, c3) and 3 servos (vl, v2, v3). The system is assumed to have perfect failure detection.

Therefore, as long as there is one computer working, the system still has computational

capability. Also, the reconfigdration is assumed to be instantlaneous, which means that

the probability of system failure due to near-coincident failures is zero. This assumption

eliminates the need for recovery transitions. The three sensors are redundant, but are linked

to specific computers (e.g., sl to el), and thus there is failure dependency between them. If

sl, s2 and c3 all fail, system failure occurs. However, if sl, s2 and cl fail, the system is still

operational. The sensor/computer combinations producing system failure are:

92

sl ci s2 c2 s3 c3

FAILURE

hl h2 h3

cl vl c2 v2 c3 v3

Figure 35: Fault. Tree of Failure Modes

AND(0R(sl,cl), 0R(s2,c2), 0R(s3,c3))

Similarly, the servos are linked with the computers. System failure occurs for the following

combinations of servo/computer failures:

AND(0R(vl,cl), 0R(v2,c2), 0R(v3,c3))

System failure also occurs when no hydraulic units are working:

AND(hl, h2, h3)

The fault-tree of figure 35 defines all of these failure modes together.

Since certain failure combinations of specific processors and specific sensors cause system

failure, it is not possible to classify the states simply by a count of the number of working

processors. It is necessary to keep track of each component separately. Thus, the state space
is:

SPACE = (WS : ARRAY[I .3] OF 0..1,
WC : ARRAY[I..3] OF 0..I,
NV : ARRAY[I..3] OF 0..1,
NH : 0..3;

93

Each of the ARRAY constructs defines three boolean variables, thus, the state space consists

of 9 boolean variables (i.e {0,1} domain) and one integer variable. The complete ASSIST

model description is:

SPACE = (WS : ARRAY [I ..3] OF 0..I,
WC : ARRAY [I ..3] OF 0..I,
WV : ARRAY [I ..3] OF 0..I,

NH : 0..3);

(* Status of the 3 sensors *)

(* Status of %he 3 computers *)
(* S_a_us of the 3 serves *)
(* Number of working hydraulics units *)

START = (3 OF i, 3 OF i, 3 OF 1, 3); (* All components working *)

LS = 7.62E-4;

LC = 3.50E-4;
LV = 3.90E-4;
LH = 6.00E-5;

(* Failure rate of sensor *)
(* Failure rate of computer *)
(* Failure rate of serve *)
(* Failure rate of hydraulics *)

FOR I = 1,3
IF WSCI] > 0 TRANTO WSCI]
IF WC[I] > 0 TRANTO WC[I]
IF WV[I] > 0 TRANTO WV[I]

ENDFOR;

IF NH > 0 TRANTO NH = NH - I

DEATHIF (WS[I]=O OR WC[I]=O)
(WS [2]=0 OR WC [2]=0)
(WS[3]=0 OR WC[3]=0)

= WS [I]
= WC[I] -
= WV[I] -

BY NH*LH;

AND
AND

I BY LS;
I BY LC;
I BY LV;

(* Sensor failure *)
(* Computer failure *)
(* Serve failure *)

(* Hydraulics unit failure *)

(* Enumeration of sensor/computer *)
(* combinations leading %o failure *)

DEATHIF NH = O;

DEATHIF (WV[1]=O OR WC[1]=O) AND
(WV[2]=O OR WC[2]=O) AND
(wv [3]=0 oR wc [3]=0) ;

(* Loss of all hydraulics units *)

(* Enumeration of serve/computer *)
(* combinations leading _o failure *)

The F0R loop effectively creates 9 TBtNT0 rules. These create failure transitions corresponding

to failures of the 9 individual components. Since there are no dependencies between the

hydraulics and the other parts of the system, the individual units do not have to be separately

accounted for. Thus, the last TI_NT0 rule merely decrements the count of working hydraulic

units. The DEATHIF statements define all of the failure combinations. The ASSIST output

is:

ASSIST VERSION 6.0
The Front End Routine FER SURE

PROCESSING TIME = 145.62
NUMBER OF STATES IN MODEL = 618
NUMBER OF TRANSITIONS IN MODEL = 4116
1672 DEATH STATES AGGREGATED INTO STATES 1 - 3

94

This model is large enough to require significant time 1o generate and to solve. The

reason the model is so large is because there are many combinations of components in the

system that can fail before system failure occurs. In fact, there are many combinations of

up to 5 or 6 component failures consisting of one or two failures of each type of component

before a condition of system failure is reached. Because the occurrence of so many failures is

unlikely during a short mission, these long paths typically contribute insignificant amounts to

the probability of system failure. The dominant failure modes of the system are typically the

short paths to system failure consisting of failures of only 3 or 4 components. Although the

long paths contribute insignificantly to the probability of system failure, the majority of the

execution time needed to generate and solve this model is spent handling those long paths.

Fortunately, model pruning can be used to eliminate the long paths to system failure by

conservatively assuming that system failure occurs earlier on those paths. Both the ASSIST

and SURE programs provide the capability to prune paths in the model automatically.

With the SURE program, the user specifies a probability level for model pruning, for

example 10 -as, and each time the probability of encountering a state in the model falls

below the specified value that path is pruned. The program sums the probabilities of all of

the pruned paths and reports that value to the user as the estimated error due to pruning.

Pruning in SURE is very effective in reducing the execution time required to solve most large

models. However, this does nothing to reduce the execution time required to generate the

large model or the amount of memory required to store a large model.

Pruning in the ASSIST program can reduce the model generation time and memory

requirements as well as the solution time. However, since pruning in ASSIST must be based

on state space variable values rather than probability calculations, it must be done more

crudely. The ASSIST user typically specifies pruning at a certain level of component failures

in the system. For example, if the user knows or suspects that the dominant failures occur

after only 3 or 4 component failures, then he can command ASSIST to prune the model at

the 4th component failure. Two ways to specify this are shown below. The easiest method

is to write a PRUNEIF statement that calculates the component failure level directly from the

state space variables:

PRUNEIF (9 - WS[I]+WS[2]+WS[3]+WC[I]+WC[2]+WC[3]+WV[I]+WV[2]+WV[3]) + 3-NIl >= 4;

This command is added to the ASSIST input file. However, this type of PRUNEIF state-

ment can be quite complicated, and calculation of component failure level directly from the

other state space variable values is not possible for some models. The second method is

to introduce a new state space variable, say "NF", specifically for the purpose of keeping a

count of the number of component failures in the system. This state space variable must

be incremented in every TRANT0 statement that defines a component failure. The complete

95

ASSIST input file for the ARCS architecture with pruning at the fourth component failure

level is thus:

LS = 7.62E-4;
LV = 3.90E-4;

LC = 3.50E-4;
LH = 6E-5;

(* Failure rate of sensors *)
(* Failure rate of servos *)

(* Failure rate of computers *)
(* Failure rate of hydraulics units *)

SPACE = (WS : ARRAY[I..3J OF 0..I,
WC : ARRAY [I..3] DF 0..I,
WV : ARRAY [1..3] OF 0..I,
NH : 0..3,
NF: 0..12);

(* Status of the 3 sensors *)

(* Status of the 3 computers *)
(* Status of the 3 servos *)
(* Number of working hydraulics units *)
(* Number of component failures *)

START = (3 OF 1, 3 OF i, 3 OF I, 3, 0); (* All components working *)

FOR I = 1,3
IF NS[I] > 0 TRANTO WS[I] = WS[I] - I, NF = NF + I BY LS; (* Sensor fails *)

IF we[I] > 0 TRANTO WC[I] = WC[I] - i, NF = NF + 1 BY LC; (* Compu. fails *)
IF WV[I] > 0 TRANTO WV[IJ = WV[I] - I, NF = NF + I BY LV; (* Servo fails *)

ENDFOR;

IF NH > 0 TRANTO NH = NH - I, NF = NF + I BY NH*LH; (* Hydraulics unit fails *)

DEATHIF (WS[I]=O 0R WC[I]=O) AND
(WS[2]=O OR WC[2]=O) AND
(WS [3]=0 OR WC [3]=0) ;

(* Enumeration of sensor/computer *)
(* combinations leading ¢o failure *)

DEATHIF NH = O; (* Loss of all hydraulics uniCs *)

DEATHIF (WV[I]=O OR WC[I]=O) AND
(WV[2]=O OR WC[2]=O) AND
(WV[3]=O OR WC[3]=O);

(* Enumeration of servo/compu_er *)

(* combinations leading ¢o failure *)

PRUNEIF NF >= 4; (* Pruning at fourth component failure level *)

The ASSIST program reports the number of states at which the model was pruned:

$ assist arcs
ASSIST VERSION 6.0
The Front End Routine FER SURE

PROCESSING TIME = 15.60
NUMBER OF STATES IN MODEL = 175
NUMBER OF TRANSITIONS IN MODEL = 1332
262 DEATH STATES AGGREGATED INTO STATFS I - 3
636 PRUNED STATES AGGREGATED INTO STATES 4 - 4

THANK YOU FOR USING ASSIST, FER SURE

Thus, pruning at the fourth component level reduced the model from 618 states and

4116 transitions to only 175 states and 1332 transitions. All of the pruned states are lumped

96

together into one state. If there had been more than one PRUNEIF statement; the pruned

states would have been lumped according to which PRUNEIF statement they satisfied. In this

example, aH of the paths pruned by the ASSIST program end in state number four.

Whenever the ASSIST input file includes one or more PRUNEIF statements, the pro-

gram automatically includes a statement in the SURE input file indicating which states are

pruned states generated by ASSIST. For example, if an ASSIST input file contained two

PRUNEIF statements and the model generated has states four and five as prune states, then

the statement

PRUNESTATES = (4,5);

would be included in the ASSIST output file, i.e., the ".mod" file.

The output from the SURE run is:

$ sure

SURE V7.4 NASA Langley Research Cen_er

i? readO arcs

11.10 SECS. TO READ MODEL FILE

40107 iis%=2
40117 run

MODEL FILE = arcs.mod SUB_ V7.4 24 Jan 90 12:12:20

DEATHSTATE LOWERBOUND UPPERBOUND
.....................

1 1.35113e-06 1.39351e-06
2 2.15552e-10 2.23300e-10
3 3.57167e-07 3.69102e-07

......................

SUBTOTAL 1.70852e-06 1.76283e-06

PRUNESTATE LOWERBOUND UPPERBOUND
................................

prune 4 5.07787e-08 5.24308e-08
......................

SUBTOTAL 5.07787e-08 5.24308e-08

COMMENTS RUN #1
.................................

TOTAL 1.70852e-06 1.81526e-06

4960 PATH(S) TO DEATH STATES
51.467 SECS. CPU TIME UTILIZED

97

40127 exit

The ASSIST prune states are reported separately from the death states as follows. When

reporting the total bounds on probability of system failure (in the line labeled "TOTAL"),

the upper bound includes the contribution of the prune states whereas the lower bound does

not. Thus, the TOTAL line reports valid bounds on the system failure probability. If the

PRUNESTATE upper bound is significant with respect to the TOTAL upper bound, then

the user has probably pruned his model too severely in ASSIST. The upper and lower bounds

can be made significantly closer by relaxing the amount of pruning.

For this example, the upper bound on the error due to the pruning done in ASSIST is

5.24308 x 10 -s.

Next, we will consider the effect of imperfect coverage of single-point failures. This will

be done by using "coverage parameters". The system is known to fail a certain fraction of

the time in the presence of a single fault. In the ARCS architecture this is assumed to only

occur after one of the units in a triad has failed and been removed. In other words, there

is perfect coverage when the triad is working. Once it has degraded to a duplex, then it is

subject to single point failures. The probability that a single fault causes system failure (in

duplex mode) are COV..S, COV_V, COV_C, and COV._H for sensors, servos, computers and

hydraulics, respectively. To simplify the DEATHIF statements, a new variable SPF is added

to the state space. The SPF variable is originally set to 0. If a single fault leads to failure

then SPF is set to 1.

LS = 7.62E-4;
LV = 3.90E-4;
LC = 3.50E-4;
LH = 6E-5;

(* Failure ra_e of sensors *)
(* Failure rate of servos *)

(* Failure rate of computers *)
(* Failure rate of hydraulics u_nits *)

COV_S = .7231;
COV_V = .95;
COV_C = .95;
COV_H = .95;

(* Sensor single-point failure coverage *)

(* Servo single-point failure coverage *)
(* Computer single-point failure coverage *)
(* Hydraulics single-point failure coverage *)

SPACE = (WS : ARRAY[I..3] OF 0..I,
WC : ARRAY[I..3] OF 0..I,
WV : AHRAY[I..3] OF 0..I,
WH : 0..3,
SPF: 0..I,
NF : 0..12);

(* S¢atus of the 3 sensors *)

(* StaCus of the 3 compuCers *)
(* StaCus of the 3 servos *)

(* Number of working hydraulics tmiCs *)
(* Single-poin¢ failure flag *)
(* Number of componen¢ failures *)

START = (3 OF 1, 3 OF 1, 3 OF 1, 3, O, 0);

(* Sensor failures *)

IF WS[I] + WS[2] + WS[3] = 3 THEN (* Triplex *)
TRANTO WS[I] = O, NF = NF + 1 BY LS;
TRANTO WS[2] = O, NF = NF + 1 BY iS;
TRANTO WS[3] = O, NF = NF + 1 BY LS;

98

ELSE (* Vulnerable to SPF *)

THANTO WS[I] = O, NF = NF + I BY COV_S*LS;
TRANTO WS[2] = O, NF = NF + 1 BY COV_S*LS;
TRANTO WS[3] = O, NF = NF + 1 BY COV_S_LS;

TRANTO SPF = 1, NF = NF + 1 BY (I-COV_S)*(WS[I] + WS[2] + WS[3])*LS;
ENDIF ;

(_ Computer failures *)

IF WC[1] + WC[2] + WC[3] = 3 THEN (* Triplex *)
TRANTO WC[I] = O, NF = NF + 1 BY LC;
TRANTO WC[2] = O, NF = NF + I BY LC;
TRANTO WC[3] = O, NF = NF + I BY LC;

ELSE (* Vulnerable to SPF *)

TRANTO WC[I] = O, NF = NF + 1 BY COV_C*LC;
TRANTD WC[2] = O, NF = NF + 1 BY COV_C*LC;
TRANTO WC[3] = O, NF = NF + 1 BY COV_C*LC;

TRANTO SPF = 1, NF = NF + 1 BY (I-COV_C)*(WC[I] + WC[2] + WC[3])*LC;
ENDIF ;

(* Servo failures _)

IF WV[1] + WV[2] + WV[3] = 3 THEN (* Triplex *)
TKANTO WV[1] = O, NF = NF + 1 BY LV;
TRANTO WV[2] = O, NF = NF + 1 BY LV;
TRANTO WV[3] = O, NF = NF + 1 BY LV;

ELSE (* Vulnerable to SPF *)

TRANTO WV[1] = O, NF = NF + 1 BY COV_V_LV;

TRANTD WV[2] = O, NF = NF + 1 BY COV_V_LV;
TKANTO WV[3] = O, NF = NF + I BY COV_V.LV;

TKANTO SPF = I BY (I-COV_V)*(WV[I] + WV[2] ÷ WV[3])*LV;
END IF ;

(* Hydraulics failures *)

IF WH = 3 THEN (* Triplex _)
TRANTO WH = WE - 1, NF = NF + 1 BY WE*LE;

ELSE (* Vulnerable to SPF z)

TKANTO WE = WE - i, NF = NF + i BY COV_H.WH*LH;
THANTO SPF = 1 BY (1-COV_H)_WH_LH;

ENDIF;

DEATHIF SPF = I;

DEATHIF (WS[I]=O OK WC[I]=O) AND
(WS [2]=0 OR WC [2]=0) AND
(WS [3]=0 OR WC [3]=0) ;

(* Single-point failure *)

(* Enmneration of sensor/computer .)
(* combinations leading to failure .)

DEATHIF WH = O;

DEATHIF (WV[1]=O OR WC[I]=O) AND
(WV[2]=O OR WC[2]=O) AND
(WV [3]=0 OR WC [3]=0) ;

(* Loss of all hydraulics units _)

(* En%uneration of servo/compu_er _)
(* <ombinations leadi_ _o fail%Lre _)

PRUNEIF (NF >= 4); (* Pru_ning at fourth component failure level *)

COMMENT=O;

LIST=2;

(_ Tells ASSIST not _o print the state space variable .)
(_ values for each state in co_unents, to decrease _)
(* the memory needed to hold the .MOD file _)

99

This input file generates a model with 239 states and 2813 transitions:

$ assist arcs2
ASSIST VERSION 6.0
The Front End Routine FER SURE

PROCESSING TIME = 26.50
NUMBER OF STATES IN MODEL = 239
NUMBER OF TRANSITIONS IN MODEL = 2813
780 DEATH STATES AGGREGATED INTO STATES 1 - 4

1419 PRUNED STATES AGGREGATED INTO STATES 5 - 5
THANK YOU FOR USING ASSIST, FER SURE

The output from the SURE program for this model is:

$sure

SURE V7.4 NASA Langley Research Center

I? readO arcs2

19.30 SECS. TO READ MODEL FILE
28337 list=2
2834? run

MODEL FILE = arcs2.mod SURE V7.4 24 Jan 90 12:41:21

DEATHSTATE LOWERBOUND UPPERBOUND
................................

1 5.18371e-05 5.34787e-05

2 9.59118e-07 9.93014e-07
3 1.94166e-I0 2.01157e-10
4 3.38427e-07 3.48844e-07

sure prune O.O0000e+O0 2.80604e-09

SUBTOTAL 5.31328e-05 5.48186e-05

PRUNESTATE LOWERBOUND UPPERBOUND
.........................

prune 5 1.03318e-07 1.07218e-07
......................

SUBTOTAL 1.03318e-07 1.07218e-07

COMMENTS RUN #I
.................................

TOTAL 5.31328e-05 5.49284e-05

11430 PATH(S) TO DEATH STATES, 1 PATH(S) PRUNED

HIGHEST PRUNE LEVEL = 3.99918e-09

100

116.700 SECS. CPU TIME UTILIZED

2835? exi_

The SURE program pruned one additional path. The SURE program automatically sets

a pruning level based on the value of the first death state encountered in the model. The

SURE program reports a bound on the error due to SURE-level pruning in a separate row:

sure prune O.O0000e+O0 2.60604e-09

The SURE-level pruning can be disabled by issuing the AUTOPFtUNE command

AUTOPRUNE = 0 ;

in the SURE input file. BY default AUTOPRUNE = 1. Once the model has been solved,

subsequent runs can be accelerated by specifying a manual PRUNE level, e.g.

PRUNE = 5E-9;

The result is:

$ sure

SURE V7.4 NASA Langley Research Cen_er

1? readO arcs2

19.20 SECS. TO READ MODEL FILE

2833? prume=Se-9
2834? run

MODEL FILE = arcs2.mod SURE V7.4 24 Jan 90 13:07:15

DEATHSTATE LOWERBOUND UPPEB3OUND
................................

1 5.18370e-05 5.34766e-05
2 9.58952e-07 9.92843e-07
3 1.88177e-i0 1.94940e-10
4 3.35984e-07 3.48183e-07

sure prune O.OO000e+O0 4.78666e-07
......................

SUBTOTAL 5.31321e-05 5.48178e-05

PRUNESTATE LOWERBOUND UPPERBOUND
................................

prune 5 9.87666e-08 1.02492e-07
......................

SUBTOTAL 9.87666e-08 1.02492e-07

COMMENTS RUN #1
.................................

TOTAL 5.31321e-05 5.53990e-05

101

9768 PATH(S) TO DEATH STATES,

99.416 SECS. CPU TIME UTILIZED
2835? exit

135 PATH(S) PRUNED AT LEVEL 5.00000e-09

Finally, we will remove the assumption of instantaneous reconfiguration. We have four

types of components--sensors, servos, computers, and hydraulics--that all have recovery

processes associated with them. Since all of these components can fail while others are

recovering, this system could potentially experience up to four simultaneous competing re-

coveries. Rather than try to model all of these competing recoveries, we will use a bounding

technique similar to one developed by Dr. Allan White and Daniel Palumbo [20], and con-

servatively assume that any second component failure during a recovery leads to system

failure. This is accomplished by generating a transition to a death state from each state in

which the system is experiencing a recovery. This transition to death will have a rate that

is the sum of the failure rates for all other components in the system. We can conveniently

reuse the SPF state space variable to flag that this is a death state, and we will distinguish

the near-coincident failure deaths from the single-point failure deaths by checking for the

presence of an active component failure:

DEATHIF (SPF = i) AND (SA+VA+HA÷CA > 0); (* Near-coinciden% failures *)

DEATHIF SPF = I; (* Single-point failures *)

Note that since the death states are lumped according to the first DEATHIF statement they

satisfy, the more specific DEATHIF statement that uses the SPF flag to signal near-coincident

failures as death states must precede the DEATHIF statement that defines true single-point

failures as death states. If these two statements were reversed, all of these failures would be

lumped as single-point failures.

The bounding near-coincident failure transitions must be defined for each component

type--sensors, servos, computers, and hydraulics. For example, the transitions from each

state with an active sensor failure are:

TRANTO SA = 0 BY FAST REC_S;
TRANTO SPF = I BY 2*LS + 3*LV + 3*LC + 3*LH;

(* Recovery *)
(* Conserva%ive bound on *)
(* near-coincident failures *)

The complete ASSIST description of the model is:

LS = 7.62E-4;
LV = 3.90E-4;
LC = 3.50E-4;
LH = 6E-5;

(* Failure rate of sensors *)
(* Failure rate of servos *)

(* Failure ra_e of computers *)
(* Failure ra%e of hydraulics units *)

102

COV_S = .7231;

COV_V = .95;
COV_C = .95;
COV_H = .95;

(. Sensor sinEle-poin% failure coverage *)
(* Servo single-point failure coverage *)
(* Computer single-point failure coverage *)
(* Hydraulics single-point failure coverage *)

REC_$ = IE4;
REC_V = 1E4;
KEC_C = 1E4;
REC_H = 1E4;

(* Exponential time to recovery from sensor failure *)
(* Exponential time %o recovery from servo failure =)
(* Exponential time %o recovery from computer failure *)
(* Exponential _ime to recovery from hydraulics failure *)

SPACE = (WS : ARRAY [I ..3] OF 0..1,
WC : ARRAY [I ..3] OF 0..I,

WV : ARRAY [1..3] OF 0..i,
WH : 0 .3,
CA: 0. 1,
VA: O. I,
SA: O. i,
HA: O. 1,
SPF: 0 .I,
NF : 0 12);

(* Status of the 3 sensors *)
(* Status of the 3 computers *)
(* Status of the 3 servos *)

(* Number of working hydraulics units *)
(* Fault in active computer *)
(* Fault in active servo *)

(* Fault in active sensor *)

(* Fault in active hydxaulics %tni% *)
(* Single-point failure flag *)
(* Number of component failures *)

START = (3 0F 1, 3 0F 1, 3 0F 1, 3, 4 0F 0, 0, 0);

(* Sensors *)
IF SA = 1 THEN (* Active sensor failure *)

TKANTO SA = 0 BY FAST P_EC_S; (* Recovery *)
TRANTO SPF = I BY 2*LS + 3*LV + 3*LC + 3*LH; (* Conservative bound on *)

(* near-coincident failures *)
ELSE (* No active sensor failures *)

IF WS[I] + WS[2] + WS[3] = 3 THEN (= Triplex *)
TKANTO WS[1] = O, NF = NF + I, SA = 1 BY LS;
TRANTO WS[2] = O, NF = NF + 1, SA = I BY LS;

TRANTO W513] = O, NF = NF + 1, SA = 1 BY LS;
ELSE (. Vulnerable _o SPF *)

TRANTD WS[I] = O, NF = NF + I, SA = I BY COV_S*LS;
TRANTO WS[2] = O, NF = NF + 1, SA = I BY COV_S*LS;
TRANTO WS[3] = O, NF = NF + 1, SA = I BY COV_S*LS;
TRANTO SPF = 1, NF = NF + i BY (1-COV_S)*LS;

ENDIF;
ENDIF;

(* Computers *)
IF CA = 1 THEN (* Active computer failure *)

TRANTO CA = 0 BY FAST REC_C; (* Recovery *)
TRANTO SPF = I BY 3*LS + 3*LV + 2*LC + 3*LH; (* Conservative bound on *)

(* near-coincident failures *)

ELSE (* No active computer failures *)
IF WC[1] * WC[2] ÷ WC[3] = 3 THEN (* Triplex *)

TRANTO WC[I] = O, NF = NF + 1, CA = 1 BY LC;
TRANTO WC[2] = O, NF = NF + 1, CA = 1 BY LC;
TRANTO WC[3] = O, NF = NF + 1, CA = 1 BY LC;

ELSE (= Vulnerable to SPF *)
TRANTO WC[I] = O, NF = NF + 1, CA = 1 BY COV_C*LC;
TRANTD WC[2] = O, NF = NF + 1, CA = 1 BY COV_C*LC;
TRANTO WC[3] = O, NF = NF + 1, CA = I BY COV_C*LC;

TRANTQ SPF = I0 NF = NF ÷ 1, CA = 1 BY (1-COV_C)*LC;

103

ENDIF;
ENDIF;

(* Serves *)
IF VA = I THEN (* Active serve failure *)

TRANTO VA = 0 BY FAST REC_V; (* Recovery *)
TRANTO SPF = I BY 3*LS + 2*LV + 3*LC + 3*LH; (* Conservative bound on *)

(* near-coincidenz failures *)
ELSE (* No active serve failures *)

IF WV[1] + WV[2] + WV[3] = 3 THEN (* Triplex *)
TRANTO WV[1] = 0, NF = NF + i, VA = 1 BY LV;
TRANTO WV[2] = O, NF = NF + I, VA = 1 BY LV;
TRANTO WV[3] = 0, NF = NF + 1, VA = 1 BY LV;

ELSE (* Vulnerable to SPF *)

TRANTO WV[1] = 0, NF = NF + 1, VA = 1 BY COV_V*LV;
TRANTO WV[2] = 0, NF = NF + I, VA = 1 BY COV_V*LV;
TRANTO WV[3] = 0, NF = NF + I, VA = 1 BY COV_V*LV;
TRANTO SPF = 1 BY (1-COV_V)*LV;

ENDIF;
ENDIF;

(* Hydraulics *)
IF HA = i THEN (* Active hydraulics failure *)

TRANTO HA = 0 BY FAST REC_H;

TRANTO SPF = I BY 3*LS + 3*LV + 3*LC + 2*LH;

ELSE (* No active hydraulics failure *)
IF WH = 3 THEN (* Triplex *)

TRANTD WH = WH - 1, HA = I BY WH*LH;
ELSE (* Vulnerable to SPF *)

TKANTO WH = WH - 1, HA = 1 BY COV_H*WH*LH;
TRANTO SPF = 1 BY (I-COV_H)*WH*LH;

ENDIF;
ENDIF;

(* Recovery *)
(* Conservative bound on *)
(* near-coincident failures *)

DEATHIF (SPF = 1) AND (SA+VA+HA+CA > 0); (* Near-coincident failures *)
DEATHIF SPF = i; (* Single-point failures *)

DEATHIF (WS[I]=O OR WC[I]=O) AND
(WS[2]=O OR WC[2]=O) AND
(WS [3]=0 OR WC [3]--0);

(* All combinations of sensor/computer *)
(* failures that lead to system failure *)

DEATHIF WH = O;

DEATHIF (WV[I]=O OR WC[1]=O) AND
(WV[2]=O OR WC[2]=O) AND
(WV [3]:0 oR wc [3]=o) ;

(* Loss of all hydraulics *)

(* All combinations of serve/computer *)
(* failures that lead to system failure *)

PRUNEIF (NF = 3); (* Pruning at 3rd component failure level *)

The ASSIST output is:

$ assist arcs3

ASSIST VERSION 6.0
The Fron_ End Routine FER SURE

104

PROCESSING TIME = 181.97

NUMBER OF STATES IN MODEL = 821
NUMBER OF TRANSITIONS IN MODEL = 8802
2570 DEATH STATES AGGREGATED INTO STATES 1 - 5
4185 PRUNED STATES AGGREGATED INTO STATES 6 - 6

The SURE output using the AUTOPRUNE _ature is:

$ sure

SURE V7.4 NASA Lan81ey Research Center

17 readO arcs3

119.17 SECS. TO READ MODEL FILE
26429? run

MODEL FILE = arcs3.mod SURE V7.4 24 Jan 90 13:24:06

DEATHSTATE LOWERBOUND UPPERBOUND
................................

1 9.32078e-07 9.63921e-07

2 2.50414e-05 2.58639e-05
3 9.40684e-07 9.78264e-07
4 1.93553e-10 2.01578e-10
5 3.28266e-07 3.41884e-07

sure prume O.O0000e+O0 9.42664e-09
......................

SUBTOTAL 2.72427e-05 2.81482e-05

PRUNESTATE LOWERBOUND UPPERBOUND
................................

prune 6 1.07040e-05 1.11349e-05
......................

SUBTOTAL 1.07040e-05 1.11349e-05

COMMENTS RUN #I
......................... --._.--------

TOTAL 2.72427e-05 3.92925e-05

12018 PATH(S) TO DEATH STATES, 1673 PATH(S) PRUNED
HIGHEST PRUNE LEVEL = 1.54070e-10

133.817 SECS. CPU TIME UTILIZED
26430? exi_

The five death states correspond to the five DEATHIF statements in the ASSIST input file.

The dominant death state is the second death state, which represents the probability of

system failure due to single-point failures. The second largest failure mode is death state

three, combinations of sensor/computer failures that lead to system failure. The conservative

105

approximation of the probability of failure due to near-coincident failures, which is death

state two, is almost two orders of magnitude smaller than the dominant failure mode.

The ASSIST pruning on this model, at the third component failure level, is very severe,

and the calculated error due to pruning is of the same order of magnitude as the dominant

failure mode probability. However, the size of the model will become quite large if the AS-

SIST pruning is moved back to the fourth component failure level. We can use a technique

similar to the bounding technique used on the near-coincident failures to reduce the conser-

vativeness of the calculation of error due to pruning. The state into which all of the pruned

paths terminate, state six, is actually an operational state of the system, not a death state.

Therefore, some other component in the system would have to fail before system failure is

reached. This can be represented by adding an additional transition to the model from state

six to some new death state not already defined in the model, say state 0. The rate for

this new transition can be conservatively set as the sum of the failure rates of all of the

components in the system:

6,0 = 3*LS + 3*LV + 3*LC + 3*LH;

This rate is conservative because some of three of these components will already have failed

at this point. In fact, the three lowest component failure rates can even be deleted from

this calculation and the rate will still be conservative. (Note. One does not have to delete

the statement, PRb_ESTATES=(6) from the generated model file. Since an operational state

cannot be a prune state, SURE will ignore this statement.) The SURE output below shows

that this modification, while still conservative, significantly reduced the calculated error due

to ASSIST pruning:

$ sure

SURE V7.4 NASA Langley Research Cen_er

I? readO arcs3

119.53 SEC$. TO READ MODEL FILE

26432? 6,0 = 3*LS + 3*LV + 3*LC + 3*LH;

26433? run

MODEL FILE = arcs3.mod

DEATHSTATE LOWERBOUND UPPERBOUND

0 1.24779e-07 1.30345e-07

1 9.32079e-07 9.63921e-07

2 2.50414e-05 2.58639e-05

3 9.40697e-07 9.78278e-07

4 1.93553e-10 2.01578e-10

SURE V7.4 24 Jan 90 13:37:00

COMMENTS RUN #1

106

5 3.28268e-07 3.41886e-07

sure prune 0.00000e+00 7.68769e-09

TOTAL 2.73675e-05 2.82862e-05

6464 PATH(S) TO DEATH STATES, 8760 PATH(S) PRUNED
HIGHEST PRUNE LEVEL = 4.60607e-ll

87.917 SEES. CPU TIME UTILIZED

26433? exit

12.3 Two Triads with Three Power Supplies

This example consists of two triads of computers with one triad of power supplies connected

such that one computer in each triad is connected to each power supply. Thus, if a power

supply fMls, then one computer in each triad fails. Because of the complex failure dependen-

cies, this is not an easy system to model. The usual method of using state space variables

to represent the number of failed computers in each triad is insufficient because which com-

puters have failed is Mso important state information. One way to model this system is

to use the state space variables as flags to indicate the failure of each computer and power

supply in the system. This uses a large number of state space variables, but the system can

be described using only a few simple TRANT0 statements. The large number of state space

variables, however, leads to an unnecessarily complex semi-Marker model. The ASSIST

input file is as follows:

LAM_PS = IE-6;
LAM_C = IE-5;

(* Failure rate of power supplies *)
(* Failure rate of compu%ers *)

SPACE = (CAF: ARRAY[1..3] OF 0..I,
CBF: ARKAY[I..3] OF 0..I,
PSF: ARKAY[I..3] OF 0..I);

START = (9 OF 0);

(* Failed computers in Triad A *)
(* Failed computers in Triad B *)
(* Failed power supplies *)

DEATHIF CAF[I] + CAF[2] + CAF[3] > I;
DEATHIF CBF[I] + CBF[2] + CBF[3] > I;

(* 2/3 computers in Triad i failed *)
(* 2/3 computers in Triad B failed *)

FOR I = 1,3
IF CAF[I]=O TRANTO CAF[I] = I BY LAM_C;

(* Failure of computer in Triad A *)
IF CBF[I]=O TRANT0 CBF[I] = 1 BY LAM_C;

(* Failure of computer in Triad B *)
IF PSF[I]=O TKANTO CAF[I] = I, CBF[I] = i, PSF[I]

(* Power supply failure *)
ENDFOR;

= I BY LAM_PS;

107

This rather brute-force method of modeling the system leads to a semi-Markov model with

70 states and 138 transitions to model this relatively simple system.

Using state space variables to represent the number of failed computers in each triad

and adding a flag to signal the dependencies between failed computers, the system may be

modeled with a much smaller state space. Combining the resulting complex transition rules

by logical reasoning, the system described above can be modeled by the following input file:

LAM_PS = 1E-6;

LAM_C = 1E-5;

SPACE = (NFP: ARRAY[I..2] OF 0..3,

(* Failure rate of power supplies *)
(* Failure raze of computers *)

NFS: 0..3,
SAME: 0..1);

START = (0, O, O, 1);

(* Number of failed *)

(* computers in each triad *)

(* Number of failed power supplies *)
(* Set to 0 if 2 failed computers are on *)
(* different power supplies, I otherwise *)

DEATHIF NFP[1]>I OR NFP[2]>I;

(* The system fails if 2/3 computers in either _riad fail *)

FOR I=1,2
IF NFP[I]<3 THEN

IF NFP[3-I]=I THEM (. Other _riad has a failed computer *)
TRANT0 NFP[I] = NFP[I]+I BY LAM_C;

(* Failure of computer on same power supply as other failed one *)
TRANT0 NFP[I] = NFP[I]+I, SAME = 0 BY (2-NFP[I])*LAM_C;

(* Failure of computer on different *)

(* power supply than o_her failed one *)
ELSE

TRANT0 NFP[I] = NFP[I]+I BY (3-NFP[I])*LAM_C;

(* Failure of computer when other triad has no failures yet *)
ENDIF;

ENDIF;
ENDFOR;

IF (NFP[I]=O AND NFP[2]=O) THEN

TRANTO (NFP[1]+I, NFP[2]+I, NFS+I, I) BY 3*LAM_PS;
(* Power supply failures when no previous *)
(* computer failures have occurred. *)

ELSE

TRANTO (2, 2, 2, O) BY (3-SAME)*LAM_PS;

(* Failure of a power supply not connected to another
(* previously failed computer. NOTE: State (2,2,2,1)
(* is an aggregation of several death states.

IF SAME = 1TRANTO (i0 1, 1, i) BY *LAM_PS;
(* Failed power supply connected to *)

(* a previously failed computsr. *)
ENDIF;

,)
,)
,)

This second ASSIST input file leads to a semi-Markov model with only 17 states and 30

transitions to model the same system that using the first strategy required 70 states and 138

transitions. However, this input file is much more difficult to understand and verify. It is

108

not unusual to encounter a trade-off between the size of the model and the simplicity of the

rules for generating the model.

12.4 Byzantine Faults

In this section we will introduce the concept of "Byzantine" faults and "Byzantine-resilient"

algorithms. Byzantine faults arise from the need to distribute single-source data such as

sensor-data to the replicated computational sites. Data values from sensors are unreplicated.

Although there may be redundant sensors, these do not produce exactly the same result.

Thus, if each processor were connected to one of the redundant sensors, they would get

different results. This is unacceptable in a system which uses exact-match voting algorithms

for fault-detection. For example, if the system uses voting for fault-detection as well as

fault-masking, Byzantine faults can cause the system to reconfigure the wrong processor.

Furthermore, the problem is not solved by having each of the processors read all of the

redundant sensors. Since the redundant processors run off of different clocks, they would

access the sensors at slightly different times and receive different results. Consequently, a

signal-processing algorithm is run on each of the processors to derive a trustworthy value
from the set of redundant sensors. This necessitates that each sensor be distributed to all of

the redundant processing sites in a consistent manner. Suppose the sensor value is read and

stored. If there is a failure in the transmission medium between this value and the redundant

sites, different values may be received by the good processors.

In order for each processing site to be guaranteed to receive the same set of "raw" values,

special "Byzantine-resilient" algorithms must be used to distribute the single-source value.

The algorithm depends fundamentally upon the availability of 4 separate fault-isolation

regions. If processors are used for the rebroadcasting, then there must be a minimum of four

processors. Consequently a simplex triplex system cannot be Byzantine resilient without

the addition of special additional hardware. The model in figure 36 models the effect of a

Byzantine fault on a triplex system with one spare that does not contain any extra hardware.

This model is the same as the traditional triplex model except that it contains two extra

transitions--from (2) to (5) and from (5) to (8). These transitions represent the situations

where a Byzantine fault has confused the operating system into reconfiguring the wrong

processor. In the first case, a good processor has been replaced by the spare and not the

faulty one. In the second case, the system incorrectly diagnoses the faulty processor and

degrades to a faulty simplex. The competing transitions at state (2) would be:

2,3 = 2*L;

2,4 = <MU_F,STD_F,I-P_W>;

2,5 = <MU_W,STD_W,P_W>;

The competing transitions at state (5) would be:

5,6 = 2*L;

109

3A

F(t) W(t)

F(t)
W(t)

Figure 36: Simple Triplex System with One Spare Subject to Byzantine Faults

110

i0--_

lO-S

#f

10-6

.... • -.'" - ,'

f-"

10 -7

lO-S

10-9 t I I I
0 2× i0-°a 4× 10-°I 6x 10-°I 8x 10 -°I 1

Pw

Figure 37: Failure Prob. As a Function of Pw

5,7 -- <MU_F,STD_F,I-P_W>;
5,8 = <MU_W,STD_W,P_W>;

The parameter P_W is the most critical parameter in this model. This can be seen in figure

37 which shows a plot of the results of executing SURE on the full model:

LAMBDA = IE-4;
MU_F = 1E-4; STD_F = 1E-4;
MU_W = IE-4; STD_W -- IE-4;
P_W = 0 TO 1 BY 0.i;

1,2 = 3*LAMBDA;
2,3 = 2.LAMBDA;
2,4 = <MU_F,STD_F,I-P_W>;
2,5 = <MU_W,STD_W,P_W>;
4,5 = 3*LAMBDA;
5,6 = 2*LAMBDA;
5,7 = <MU_F,STD_F,I-P_W>;
5,8 = <MU_W,STD_W,P_W>;
7,8 = LAMBDA;
TIME = I0;

111

Unfortunately, there is very little experimental data or methods available to aid in the

estimation of Pw. For this reason, conservative fault-tolerant system designers have elected

to add the additional hardware to make the architecture Byzantine-resilient. This eliminates

this failure mode from the system. However, the failure of any additional hardware must be
modelled.

112

13 Time and Sequence Dependencies

Many systems experience failure or recovery rates that are dependent on the current state

or the failure history of the system. Several example systems exhibiting these types of

dependencies are given in this section.

13.1 Failure Rate Dependencies

Consider a triad of processors in which the processors are protected from voltage surges by

voltage regulators. The processors fail at rate Ap. The system initially contains two voltage

regulators. These voltage regulators fail at rate SR. Once both of the voltage regulators fail,

the processors are also subject to failure due to voltage surges, which arrive at an exponential

rate Av.

(* FAILURE RATE DEPENDENCIES *)

LAMBDA_P = 1E-5;
LAMBDA_V = 1E-2;
LAMBDA_R = IE-3;

SPACE = (NP: 0..3,
NFP: 0..3,
NR: 0..2);

START = (3,0,2);

DEATHIF 2 * NFP >= NP;

(* Permanen_ failure rate of processors *)
(* Arrival rate of damaging voltage surges *)
(* Failure ra_e of vol_age regulators *)

(* Number of active processors *)
(* Number of failed active processors *)

(* Number of working voltage regulators *)

(* Star_ wi_h 3 working processors, 2 regs. *)

(* Vo_er defeated *)

(* Processor failures *)

IF NP > NFP TRANTO NFP = NFP+I BY (NP-NFP)*LAMBDA_P;

(* Failure of processor due to voltage surge *)

IF (NR = O) AND (NP > NFP) TRANTO NFP _ NFP+i BY (NP-NFP)*LAMBDA_V;

(* Voltage regulator failures *)
IF NR > 0 TRANTO NR = NR-I BY NR*LAMBDA_R;

(* Reconfiguration *)
IF NFP > 0 TRANTO (NP-I,NFP-I,NR) BY <8.0E-S,3.0E-5>;

Since this model contains only one DEATHIF statement, all of the system failure proba-

bilities will be lumped together. The addition of another DEATHIF statement placed in front

of the one above could capture the probability of having both voltage regulators fail before

the system failure condition is reached:

DEATHIF (NR=O) AND (2 * NFP >= NP);

113

13.2 Recovery Rate Dependencies

In this system, the speed of the recovery process is significantly affected by the number of

active components. This is accomplished by making the recovery rate a function of the state

space variable NP, the number of active processors.

(* RECOVERY BATE DEPENDENCIES *)

N_PROCS = 10; (* Initial number of processors *)
LAMBDA_P = 8E-3; (* Permanen_ failure rate of processors *)

SPACE = (NP: O..N_PROCS, (* Number of active processors ,)

NFP: 0..N_PR0CS); (* Number of failed active processors *)

START = (N_PROCS,0);

DEATHIF 2 * NFP >= NP; (* Vo_er defeated *)

(* Processor failures ")

IF NP > NFP TRANTO NFP = NFP+I BY (NP-NFP)*LAMBDA_P;

(* Reconfiguration where rate is a function of NP *)

IF NFP > 0 TRANTO (NP-1,NFP-I) BY <NP*I.OE-5 ÷ 3.0E-5,NP*2.0E-6 ÷ 1.0E-5>;

14 Sequences of Reliability Models

The SURE program provides the user with the capability to calculate and store the prob-

ability of terminating in each of the operational states of the model as well as the death

state probabilities. The program also allows the user to initialize a model using these same

operational state probabilities. These features support the use of sequences of rehability

models to model systems with phased missions or non-constant failure rates.

14.1 Phased Missions

Many systems exhibit different failure behaviors or operational characteristics during dif-

ferent phases of a mission. For example, a spacecraft may experience considerably higher

component failure rates during liftoff than in the weightless, benign environment of space.

Also, the failure of a particular component may be catastrophic only during a specific phase,

such as the three-minute landing phase of an aircraft.

In a phased-mission solution, a model is solved for the first phase of the mission. The

final probabilities of the operational states are used to calculate the initial state probabilities

for a second model. (The second model usually differs from the first model in some manner.)

This process is repeated for as many phases as there are in the mission.

114

The SURE program reports upper and lower bounds on the operational states just as

for the death states. These bounds are not as tight as the death state probabilities_ but

are usually acceptable. The upper and lower bounds on recovery states (i.e. states with

fast transitions leaving them) are usually not very close together. Fortunately, these states

usually have operational probabilities which are several orders of magnitude lower than the

other states in the model because systems typically spend a very small percentage of their

operational time performing recoveries. Thus, in subsequent phases the crudeness of the

bounds for the recovery states in previous phases do not lead to an excessive separation of the

final death state bounds. In other words, the crude operational recovery state probabilities

will usually result in only a small separation of the final bounds obtained in phased mission

calculations. Although the bounds may sometimes be unacceptably far apart, they will

always be mathematically correct.

Suppose we have a system which operates in two basic phases--(1) cruise and (2) landing.

The system is implemented using a triad of processors and two warm spares. For simplicity,

we will assume perfect detection of spare failure. During the cruise phase which lasts for

2 hours, the system reconfigures by sparing and degradation. After the cruise phase, the

system goes into a landing phase which lasts 3 minutes. During this phase, the workload

on the machines is so high that the additional processing that would be needed to perform

reconfiguration cannot be tolerated. Therefore, the system is designed to "turn off" the

reconfiguration processes during this phase.

In order to model this two-phased mission, two different models must be created--one

for each phase. The following ASSIST input describes a model for the cruise phase:

NSI = 2;
LAMBDA = IE-4;

GAMMA = IE-6;
TIME = 2.0;

MU = 7.9E-5;
SIGMA = 2.56E-5;

MU_DEG = 6.3E-5;
SIGMA_DEG = 1.74E-5;

SPACE = (NW: 0..3,
NF: 0..3,
NS: O..NSI);

START = (3,0,NSI);

LIST=3;

(* Number of spares initially *)
(* Failure rate of active processors *)
(* Failure rate of spares *)
(* Mission time *)

(* Mean time to replace with spare *)

(* Start. dev. of time to replace with spare *)

(* Mean time to degrade so simplex *)

(* S%an. dev. of time to degrade to simplex *)

(* Number of working processors *)
(* Number of failed active procssors *)
(* Number of spares *)

IF NW > 0

TRANTO (NW-I,NF+I,NS) BY NW*LAMBDA;
(* A processor can fail *)

IF (NF > O) AND (NS > O) (* A spare becomes active *)
TBANTO (NW+I,NF-I,NS-I) BY <MU,SIGMA>;

115

IF (NF > O) AND (NS = O)
TRANT0 (I,0,0) BY <MU_DEG,SIGMA_DEG>;

IF NS > 0

TRANTO (NW,NF,NS-1) BY NS*GAMMA;

DEAI'HIF NF >= NW;

(* No more spares, degrade _o simplex *)

(* A spare fails and is deSecSed *)

The ASSIST program generates the following SURE model.

NSI = 2;
LAMBDA = 1E-4;

GAMMA = 1E-6;
TIME = 2.0;
MU = 7.9E-5;
SIGMA = 2.56E-5;
MU_DEG = 6.3E-5;
SIGMA_DE = 1.74E-5;

LIST = 3;

2(* 3,0,2 *),
2(* 3,0,2 *)
3(* 2,1,2 *)
3(* 2,1,2 *)
3(* 2,1,2 *)
4(* 3,0,1 *)
4(* 3,0,1 *)
5(* 2,1,1 *),
S(* 2,1,1 *)
5(* 2,1,1 *)
6(* 3,0,0 *)
7(* 2,1,0 *)
7(* 2,1,0 *)
8(* 1,0,0 *)

3(* 2,1,2 *) = 3*LAMBDA;
4(* 3,0,1 *) = 2*GAMMA;
1(* 1,2,2 *) = 2*LAMBDA;
4(* 3,0,1 *) = <MU,SIGMA>;
5(* 2,1,1 *) = 2*GAMMA;
5(* 2,1,1 *) = 3*LAMBDA;
6(* 3,0,0 *) = 1*GAMMA;
1(* 1,2,1 *) = 2*LAMBDA;
6(* 3,0,0 *) = <MU,SIGMA>;
7(* 2,1,0 *) = 1*GAMMA;
7(* 2,1,0 *) = 3*LAMBDA;
1(* 1,2,0 *) = 2*LAMBDA;
8(* 1,0,0 *) = <MU_DEG,SIGMA_DEG>;
1(* 0,1,0 *) = I*LAMBDA;

(* NUMBER OF STATES IN MODEL = 8 *)
(* NUMBER OF TRANSITIONS IN MODEL = 14 *)
(* 4 DEATH STATES AGGREGATED STATES 1 - 1 *)

The model for the second phase (call it "phaz2.mod") is easily created with an editor by

deleting the reconfiguration transitions and changing the mission time to 0.05 hours. The

resulting file is:

NSI = 2;
LAMBDA = 1E-4;
GAMMA = 1E-6;
TIME = 0.05;

LIST = 3;

2(* 3,0,2 *), 3(* 2,1,2 *) = 3*LAMBDA;

116

2(* 3,0,2 *), 4(* 3,0,1 *) = 2*GAMMA;
3(* 2,1,2 *), 1(* 1,2,2 *) = 2*LAMBDA;

3(* 2,1,2 *), 5(* 2,1,1 *) = 2*GAMMA;
4(* 3,0,1 *), 5(* 2,1,1 *) = 3*LAMBDA;
4(* 3,0,1 *), 6(* 3,0,0 *) = 1*GAMMA;
5(* 2,1,1 *), 1(* 1,2,1 *) = 2*LAMBDA;

5(* 2,1,1 *), 7(* 2,1,0 *) = 1*GAMMA;
6(* 3,0,0 *), 7(* 2,1,0 *) = 3*LAMBDA;
7(* 2,1,0 *), 1(* 1,2,0 *) = 2*LAMBDA;

8(* 1,0,0 *), 1(* 0,1,0 *) = I*LAMBDA;

The SURE program is then executed on the first model (stored in file "phaz.mod"), using

the LIST = 3 option. This causes the SURE program to output all of the operational state

probabities as well as the death state probabilities. This is illustrated below:

SURE V7.2 NASA Langley Research Center

1? readO phaz

317 run

MODEL FILE = phaz.mod SURE V7.2 11 Jan 90 13:56:49

DEATHSTATE LOWERBOUND UPPERBOUND
................................

1 9.35692e-12 9.48468e-12

TOTAL 9.35692e-12 9.48468e-12

COMMENTS RUN #1
.................................

OPER-STATE

2
3
4
5
6
7
8

LOWERBOUND

9.99396e-01
0 O0000e+O0
6 02277e-04
0 O0000e+O0
i 80332e-07
0 O0000e+O0
3 57995e-ll

UPPERBOUND

9.99396e-01
1.53952e-06
6.03819e-04
1.43291e-09
1.81768e-07
5.59545e-13
3.63591e-ll

20 PATH(S) PROCESSED
0.617 SECS. CPU TIME UTILIZED
32? exit

117

The SURE program also creates a file containing these probabilities in a format that

can be used to initialize the states for the next phase. The SURE program names the file

"phaz.ini", i.e. adds ".ini" to the file name. The contents of this file generated by the run

above is:

S:

6:
7:
8:

);

INITIAL_PROBS(
1: (9.35692e-12, 9.48468e-12)
2: (9.99396e-01, 9.99396e-01)
3: (O.O0000e+O0, 1.53952e-06)
4: (6.02277e-04, 6.03819e-04)

(O.O0000e+O0, 1.43291e-09)
(1.80332e-07, 1.81768e-07)
(O.O0000e+O0, 5.59545e-13)
(3.57995e-11, 3.63591e-11)

Next, the SURE program is executed on the second model. The state probabilities are

initialized using the SURE INITIAL_PROB$ command. The second model must number its

states in an equivalent manner to the first model. Note that ".ini" file output is in the correct

format for the SURE program:

sure

SURE V7.2 NASA Langley Research Cen_er

17 readO phaz2

317 read phaz.ini

32: INITIAL_PROBS(
33: 1: (9.35692e-12, 9.48468e-12),
34: 2: (9.99396e-01, 9.99396e-01),
35: 3: (O.O0000e+O0, 1.53982e-06),
36: 4: (6.02277e-04, 6.03819e-04),
37: 5: (O.O0000e+O0, 1.43291e-09),
38: 6: (1.80332e-07, 1.81768e-07),
39: 7: (O.O0000e+O0, 5.59545e-13),
40: 8: (3.57995e-11, 3.63591e-11)
41:);

42? run

MODEL FILE = phaz.ini SURE V7.2 11JaJ_ 90 13:58:i2

DEATHSTATE LOWERBOUND UPPERBOUND

1 8.43564e-11 9. 98944e-II

TOTAL 8. 43564e- 11 9. 98944e- 11

COMMENTS RUN #1

118

OPER-STATE LOWERBOUND

2 9.99381e-01
3 1.49908e-05
4 6.02368e-04
5 9.03554e-09
6 1.80359e-07
7 2.70540e-12
8 3.57993e-ll

UPPER3OUND

9 99381e-01
I 65304e-05
6 03910e-04
I 04918e-08
I 81795e-07
3 28658e-12
3 63589e-ll

9 PATH(S) PRUNED AT LEVEL 1.49540e-16
SUM OF PRUNED STATES PROBABILITY < 5.04017e-18

9 PATH(S) PROCESSED
0.417 SECS. CPU TIME UTILIZED
43?

14.2 Non-Constant Failure Rates

In the previous section, a two-phased system was analyzed which required different models

for each of the phases. A related situation occurs when the structure of the model remains

the same, but some parameters, such as the failure rates, change from one phase to another.

Consider a triad with warm spares that experiences different failure rates for each of the

phases:

, phasel(fimin): _=2 x 10 -4 , "r= 10 -4

• phase 2 (2 hours): A=10 -4 , "_=10 -s

• phase3 (3rain): A=10 -3 , "_=10 -4

The same SURE model can be used for all of the phases, and the user can be prompted

for the parameter values using the SURE INPUT command:

INPUT LAMBDA, GAMMA, TIME;

The full SURE model, stored in file "phase.mod,"is:

INPUT LAMBDA, GAMMA, TIME;
NSI = 2;
MU = 7.9E-5;
SIGMA = 2.56E-5;
MU_DEG = 6.3E-5;

SIGMA_DE = 1.74E-5;
LIST = 3;
QTCALC = 1;

119

2(* 3,0,2 *),
2(* 3,0,2 *),
3(* 2,1,2 *),
3(* 2,1,2 *),
3(* 2,1,2 *),
4(* 3,0,1 *),
4(* 3,0,1 *),
5(* 2,1,1 *),
5(* 2,1,1 *),
S(* 2,1,1 *),
6(* 3,0,0 *),
7(* 2,1,0 *),
7(* 2,1,0 *),
8(* 1,0,0 *),

3(* 2,1,2 *) = 3*LAMBDA;
4(* 3,0,1 *) = 2*GIMMA;
1(* 1,2,2 *) = 2*LAMBDA;
4(* 3,0,1 *) = <NU,SIGMA>;
S(* 2,1,1 *) = 2*GAMMA;
5(* 2,1,1 *) = 3*LAMBDA;
6(* 3,0,0 *) = I*GJLMMA;
1(* 1,2,1 *) = 2*LAMBDA;
6(* 3,0,0 *) = <MU,SIGMA>;
7(* 2,1,0 *) = 1*GAMMA;
7(* 2,1,0 *) = 3*LAMBDA;
1(* 1,2,0 *) = 2*LAMBDA;
8(* 1,0,0 *) = <MU_DEG,SIGMA_DEG>;
1(* 0,1,0 *) = I*LAMBDA;

The 0TCALC = 1 command causes the SURE program to use more accurate (but slower)

numerical routines. This increased accuracy is often necessary when analyzing phased mis-
sions. The interactive session follows:

SURE V7.2 NASA Langley Research Cen_er

1? readO phase

LAMBDA? 2e-4

GAMMA? le-4

TIME? .1

30? run

MODEL FILE = phase.mod SURE V7.2 12 Jan 90 09:38:50

TIME = 1.000o-01, GAMMA = 1.000o-04, LAMBDA = 2.000e-04,

DEATHSTATE LOWERBOUND UPPERBOb_D COMMENTS
................................

1 1.78562e-12 1.89600e-12 <ExpMat>

TOTAL 1.78562e-12 1.89600o-12 <ExpMa¢ - 14,14>

RUN #1

OPER-STATE LONERBOUND UPPER3Ob_D
.....................

2 9.99920e-01 9.99920e-01 <ExpMat>
3 O.O0000e+O0 9.98043e-07 <ExpMa¢>
4 7.89960e-05 7.99941e-05 <ExpMa¢>
5 O.O0000e+O0 1.14966o-10 <ExpMa¢>
6 2.67751e-09 2.80076e-09 <ExpMa_>

120

7 O.O0000e+O0 5.17358e-15 <ExpMa_>
8 5.08706e-14 5.60442e-14 <ExpMat>

10 PATH(S) PRUNED AT LEVEL 4.75740e-20

SUM OF PRUNED STATES PROBABILITY < 6.11113e-20

Q(T) ACCURACY >= 14 DIGITS

10 PATH(S) PROCESSED
2.867 SECS. CPU TIME UTILIZED

31? readO phase

LAMBDA? le-4

GAMMA? Ie-5

TIME? 2.0

60? read phase.ini

61: INITIAL_PROBS(
62:
63:
64:
65:
66:
67:
68:
69:
70:);

1: (1.78562e-12
2: (9.99920e-01
3: (O.O0000e+O0
4: (7.89960e-05
5: (O.O0000e+O0
6: (2.67751e-09
7: (O.O0000e+O0
8: (5.08706e-14

1 89600e-12),
9 99920e-01),
9 98043e-07),
7 99941e-05),
1 14966e-10),
2 80076e-09),
5 17358e-15),
S 60442e-14)

0.07 SECS. TO READ MODEL FILE
71? run

MODEL FILE = phase.ini SURE V7.2 12 Jan 90 09:36:19

TIME = 2.000e+O0, GAMMA = 1.000e-05, LAMBDA = 1.000e-04,

DEATHSTATE LOWERBOUND UPPERBOUND
......................

1 1.11438e-11 1.13950e-li

TOTAL 1.11438e-ll 1.13950e-ll

COMMENTS RUN #2
.........................

<ExpMa_>

<ExpMa_ - 14,14>

0PER-STATE L0WERBOUND UPPERBOUND
................................

2 9.99280e-01 9.99280e-01 <ExpMa_>
3 O.O0000e+O0 2.35621e-06 <ExpMa_>
4 7.17134e-04 7.20490e-04 <ExpMa_>
5 O.O0000e+O0 2.82024e-09 <ExpMa_>
6 2.48355e-07 2.51362e-07 <ExpMa_>
7 O.O0000e+O0 1.19806e-12 " <ExpMat>
8 5.53210e-ll 5.65243e-ll <ExpMa_>

121

30 PATH(S) PRUNED AT LEVEL 4.61326e-19
SUM OF PRUNED STATES PROBABILITY < 1.15985e-18
Q(T) ACCURACY >= 14 DIGITS

19 PATH(S) PROCESSED
4.267 SECS. CPU TIME UTILIZED

72? readO phase

LAMBDA? le-3

GAMMA? le-4

TIME? O.OB

I017 read phase.ini

102: INITIAL_PROBS(
103:
104:
105:
106:
107:
108:
109:
110:
III:

1: (1.11438e-11, 1.13950e-11),
2: (9.99280e-01, 9.99280e-01),
3: (O.O0000e+O0, 2.3S621e-06),
4: (7.17134e-04, 7.20490e-04),
5: (O.O0000e+O0, 2.82024e-09),
6: (2.48355e-07, 2.51362e-07) o
7: (O.O0000e+O0, 1.19806e-12),
8: (5.53210e-11, 5.65243e-11)

);

112? run

MODEL FILE = phase.ini SURE V7.2 12 Jan 90

TIME = 5.000e-02, GAMMA = 1.000e-04, LAMBDA = 1.000e-03,

09:36:57

DEATHSTATE LOWERBOUND UPPER.BOUND COMMENTS

I 3.29083e-II 3.54718e-11 <ExpMa_>

TOTAL 3.29083e-ll 3.54718e-ll <ExpMa_ - 14,14>

RUN #3

OPEK-STATE LOWERBOUND
.....................

2 9.99120e-01
3 O.O0000e+O0
4 8.72933e-04
5 O.O0000e+O0
6 3.68000e-07
7 O.O0000e+O0
8 9.99350e-ll

UPPERBOUND

9 99120e-01
6 30518e-06
8 82595e-04
7 50836e-09
3 78S61e-07
3 72751e-12
I 04866e- 10

<ExpMa_>
<ExpMat>

<ExpMa_>
<ExpMa_>
<ExpMa_>
<ExpMat>
<gxpMat>

33 PATH(S) PRUNED AT LEVEL 8.23385e-18
SUM OF PRUNED STATES PROBABILITY < 3.35190e-17

Q(T) ACCURACY >= 14 DIGITS

122

time(t)

Figure 38: Decreasing Failure Rate Function

13 PATH(S) PROCESSED
3.350 SECS. CPU TIME UTILIZED

I13? exi_

As in the previous section, the results of each previous phase are loaded by reading the

".ini" file created by the previous run. The <ExpMat> output in the COMMENTSfield indicates

that the more accurate QTCALC=I numerical routines were utilized.

14.3 Continuously Varying Failure Rates

Suppose that the failure rates change continuously in time as shown in figure 38. This type

of failure rate is called a "decreasing failure rate". The SURE program cannot handle this

type of failure rate directly since it leads to "non-homogeneous" or "non-stationary" Markov

models. However, good results can be obtained by using the phased-mission approach on a

"linearized" upper bound shown in figure 39.

This problem requires nine steps, but is quite easy with the use of the ".irfi" files. Because

an upper bound is used for the failure rate, the result will be conservative. The problem can

then be solved again using a consistently lower bound for the failure rate function to obtain

a lower bound on the system failure probability.

123

time(t)

Figure 39: Upper bound On Failure-Rate Function

15 Concluding Remarks

In this paper, we have presented a number of techniques for developing reliability models of

fault-tolerant systems. We have tried to present various modeling techniques in a systematic

way, building from simple systems to more complicated ones, and introducing techniques for

modeling specific aspects, such as single-point failures, near-coincident failures, transient-

fault recoveries, cold spares, etc. However, it must be recognized that there is no "right"

way to model a system--there are many valid ways to model a given system, and choosing

which method will result in an efficient, informative model is more of an art than a science.

It is impossible to include every minute detail in a reliability model of a complex system,

because such a model would be exhorbitantly large. It is not even possible to completely

understand and measure the reliability behavior of a system in minute detail. Therefore, the

reliability engineer must make certain assumptions about the behavior of a system. Some of

these assumptions are immediately obvious; while others must be demonstrated or proven

correct. In reality, if two reliability engineers were modelling the same system independently,

they would undoubtedly produce two different models because they would make different

assumptions about the system.

Markov modeling can be a very powerful reliability analysis tool for three reasons. First,

Markov models provide the reliability engineer the flexibility to include whatever assumptions

or behaviors he wishes. Second, the reliability engineer is fully aware of the assumptions he

is making because he must make them explicitly. And third, he can estimate the effects of

124

thoseassumptionson the systemfailure probability calculations.
However,reliability analysis requiresa certain level of expertisethat cannot be easily

automated. The useof an automatedtool that makesimplicit assumptionscanbedangerous.
Even if the engineercompletelyunderstandswhat implicit assumptionsa tool can make,he
is likely to forget them if they are not made visible to him. For this reason,the ASSIST
program is designedto generateexactly the model describedin the input languageand to
not makeany implicit assumptions.Thus, ASSISTincludes all of the flexibility of Markov
models. It alsorequiresthe samelevelof modelingexpertise.

Wehopethis papercanserveasatutorial for reliability engineerslearninghow to develop
Markov modelsof fault-tolerant systems.

125

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Is]

[9]

[lO]

[11]

[12]

[13]

Siewiorek, Daniel P.; and Swarz, Robert S.: The Theory and Practice of Reliable System

Design, Digital Press, 1982, pp. 31-42.

Reliability Prediction of Electronic Equipment. MIL-HDBK-217D, U.S. Department of

Defense, January 1982.

Krishna, C. M.; Shin, K. G.; and Butler, R. W.: Synchronization and Fault-Masking in

Redundant Real-Time Systems, Fourteenth International Conference on Fault-Tolerant

Computing (FTCS-14), Kissimmee, Florida, June 1984.

Butler, Ricky W.; and Martensen, Anna L.: The Fault-Tree Compiler (FTC). NASA
TP-2915, July 1989.

FineUi, George B.: Characterization of Fault Recovery through Fault Injection on

FTMP, IEEE Transactions on Reliability, Vol. R-36, No. 2, June 1987.

Lala, Jaynaxayan H.; and Smith, T. Basil, III: Development and Evaluation of a Fault-

Tolerant Multiprocessor (FTMP) Computer. Vol. III- FTMP Test and Evaluation.

NASA CR-166073, 1983.

White, Allan L.: Synthetic Bounds for Semi-Markov Reliabihty Models. NASA CR-

178008, 1985.

Butler, Ricky W.; and White, Allan L.: SURE Reliability Analysis: Program and Math-

ematics, NASA TP-2764, March 1988.

Bavuso, S. J.; and Petersen, P. L.: CARE III Model Overview and User's Guide (First

Revision). NASA TM-86404, 1985.

Dugan, J. B.; Trivedi, K. S.; Smotherman, M. K.; and Geist, R. M.: The Hybrid

Automated Reliability Predictor, Journal of Guidance, Control, and Dynamics, Vol. 9,

No. 3, May-June 1986, pp. 319-331.

Butler, Ricky W; and Stevenson, Philip H.: The PAWS and STEM Rehability Analysis

Programs. NASA TM-100572, March 1988.

Goldberg, Jack, et. al.: Development and Analysis of the Software Implemented Fault-

Tolerance (SIFT) Computer. NASA CR-172146, 1984.

McGough, J. G. and Swern, F. L.: Measurement of Fault Latency in a Digital Avionic

Mini Processor, NASA Contractor Report 3462, Oct. 1981.

126

[14] Johnson, Sally C.: ASSIST User's Manual. NASA TM-87735, August 1986.

[15] Johnson, Sally C.: Reliability Analysis of Large, Complex Systems using ASSIST,

AIAA/IEEE 8th Digital Avionics Systems Conference, San Jose, California, October
1988.

[16]

[17]

[18]

[19]

[20]

Hopkins, Albert L. Jr.; Smith, T. Basil III; and Jaynarayan, H. Lala: FTMP--A Highly

Reliable Fault-Tolerant Multiprocessor for Aircraft, Proceedings of the IEEE, Vol 66,

No. 10, Oct. 1978, pp.1221-1239.

Butler, Ricky W; and Elks, Carl R.: A Preliminary Transient-Fault Experiment on the

SIFT Computer. NASA TM-89058, February 1987.

Bavuso, S. J., et. al.: Analysis of Typical Fault-Tolerant Architectures Using HARP,

IEEE Transactions on Reliability, Vol. R-36, No. 2., June 1987.

Lala, J. H.; Alger, L. S.; Gauthier, R. J.; and Dzwonczyk, M. J.: A Fault Tolerant

Processor to Meet Rigorous Failure Requirements. CSDL-P-2705, Charles Stark Draper

Lab., Inc. July 1986.

White, Allan L., and Palumbo Daniel L.: State Reduction for Semi-Markov Reliability

Models, The 36th Annual Reliability and Maintainability Symposium, Los Angeles, CA,

January 1990.

127

Report Documentation Page

1, Report No. 2. Government Accession No.

NASA TM-102623

4. Title and Subtitle

The Art of Fault-Tolerant System Reliability Modeling

7, Author(s)

Ricky W. Butler and Sally C. Johnson

9. Pedorming Organization Name and Address

NASA Langley Research Center

Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001

3. Recipient's Catalog No.

5. Repo_ Date

March 1990

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

505-66-21-01

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

This paper presents a step-by-step tutorial of the methods and tools used for

the reliability analysis of fault-tolerant systems4 The emphasis is on the

representation of architectural features in mathematical models. The paper

does not present details of the mathematical solution of complex reliability

models. Instead the paper describes the use of several recently developed

computer programsNSURE, ASSIST, STEM, PAWS--which automate the generation and
solution of these models.

17. Key Words (Sugared by Author(s))

Reliability Modeling

Markov Models

Reliability Analysis

Fault Tolerance

19. SecuriW Clauif. (of this report)

Unclassified

n

NASA FORM 1626 OCT 86

18. Distribution Statement

Unclassified - Unlimited

Star Category 62

. SecuriW Cla. (of this _)

Unclassified -..---
21

No. of pages

13t

22. Price

AO 7

